These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25448425)

  • 1. Alignment of an acoustic manipulation device with cepstral analysis of electronic impedance data.
    Hughes DA; Qiu Y; Démoré C; Weijer CJ; Cochran S
    Ultrasonics; 2015 Feb; 56():172-7. PubMed ID: 25448425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sputtered SiO2 as low acoustic impedance material for Bragg mirror fabrication in BAW resonators.
    Olivares J; Wegmann E; Capilla J; Iborra E; Clement M; Vergara L; Aigner R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):23-9. PubMed ID: 20040422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulation of micrometer sized particles within a micromachined fluidic device to form two-dimensional patterns using ultrasound.
    Oberti S; Neild A; Dual J
    J Acoust Soc Am; 2007 Feb; 121(2):778-85. PubMed ID: 17348502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the onset of the acoustic streaming in parallel plate resonators with pulse ultrasound.
    Castro A; Hoyos M
    Ultrasonics; 2016 Mar; 66():166-171. PubMed ID: 26705604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling for the robust design of layered resonators for ultrasonic particle manipulation.
    Hill M; Townsend RJ; Harris NR
    Ultrasonics; 2008 Nov; 48(6-7):521-8. PubMed ID: 18664398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.
    Hoche S; Hussein MA; Becker T
    Ultrasonics; 2015 Mar; 57():65-71. PubMed ID: 25465962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Schlieren visualization of ultrasonic standing waves in mm-sized chambers for ultrasonic particle manipulation.
    Möller D; Degen N; Dual J
    J Nanobiotechnology; 2013 Jun; 11():21. PubMed ID: 23842114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical evaluation of the acoustic field in an ultrasonic bioreactor.
    Louw TM; Subramanian A; Viljoen HJ
    Ultrasound Med Biol; 2015 Jun; 41(6):1766-78. PubMed ID: 25771444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator.
    Kim K; Zhang S; Jiang X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Nov; 59(11):2548-54. PubMed ID: 23192819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled resonator filter with single-layer acoustic coupler.
    Jamneala T; Small M; Ruby R; Larson JD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2320-6. PubMed ID: 18986880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.
    Mitri FG
    Ultrasonics; 2009 Dec; 49(8):794-8. PubMed ID: 19692103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and characterization of a high-power ultrasound driver with ultralow-output impedance.
    Lewis GK; Olbricht WL
    Rev Sci Instrum; 2009 Nov; 80(11):114704. PubMed ID: 19947748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic sorting of airborne particles by a phononic crystal waveguide.
    Korozlu N; Biçer A; Sayarcan D; Adem Kaya O; Cicek A
    Ultrasonics; 2022 Aug; 124():106777. PubMed ID: 35660202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model and measurements of the electrical input impedance of a plate-liquid-plate acoustic resonator.
    Padilla F; Gindre M; Le Huérou JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 May; 48(3):838-43. PubMed ID: 11381709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles.
    Huang J; Ren X; Zhou Q; Zhou J; Xu Z
    Ultrasonics; 2023 Feb; 128():106865. PubMed ID: 36260963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic devices for particle and cell manipulation and sensing.
    Qiu Y; Wang H; Demore CE; Hughes DA; Glynne-Jones P; Gebhardt S; Bolhovitins A; Poltarjonoks R; Weijer K; Schönecker A; Hill M; Cochran S
    Sensors (Basel); 2014 Aug; 14(8):14806-38. PubMed ID: 25123465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.
    Antao DS; Farouk B
    J Acoust Soc Am; 2013 Aug; 134(2):917-32. PubMed ID: 23927091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications.
    Johansson L; Enlund J; Johansson S; Katardjiev I; Yantchev V
    Biomed Microdevices; 2012 Apr; 14(2):279-89. PubMed ID: 22076383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.