BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 25448466)

  • 21. Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms.
    Jensen PØ; Briales A; Brochmann RP; Wang H; Kragh KN; Kolpen M; Hempel C; Bjarnsholt T; Høiby N; Ciofu O
    Pathog Dis; 2014 Apr; 70(3):440-3. PubMed ID: 24376174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis.
    Rogan MP; Taggart CC; Greene CM; Murphy PG; O'Neill SJ; McElvaney NG
    J Infect Dis; 2004 Oct; 190(7):1245-53. PubMed ID: 15346334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung.
    Sriramulu DD; Lünsdorf H; Lam JS; Römling U
    J Med Microbiol; 2005 Jul; 54(Pt 7):667-676. PubMed ID: 15947432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients.
    Ciofu O; Tolker-Nielsen T; Jensen PØ; Wang H; Høiby N
    Adv Drug Deliv Rev; 2015 May; 85():7-23. PubMed ID: 25477303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections.
    Meers P; Neville M; Malinin V; Scotto AW; Sardaryan G; Kurumunda R; Mackinson C; James G; Fisher S; Perkins WR
    J Antimicrob Chemother; 2008 Apr; 61(4):859-68. PubMed ID: 18305202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural basis of Zn(II) induced metal detoxification and antibiotic resistance by histidine kinase CzcS in Pseudomonas aeruginosa.
    Wang D; Chen W; Huang S; He Y; Liu X; Hu Q; Wei T; Sang H; Gan J; Chen H
    PLoS Pathog; 2017 Jul; 13(7):e1006533. PubMed ID: 28732057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sputum versus bronchoscopy for diagnosis of Pseudomonas aeruginosa biofilms in cystic fibrosis.
    Aaron SD; Kottachchi D; Ferris WJ; Vandemheen KL; St Denis ML; Plouffe A; Doucette SP; Saginur R; Chan FT; Ramotar K
    Eur Respir J; 2004 Oct; 24(4):631-7. PubMed ID: 15459143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial cis-2-unsaturated fatty acids found in the cystic fibrosis airway modulate virulence and persistence of Pseudomonas aeruginosa.
    Twomey KB; O'Connell OJ; McCarthy Y; Dow JM; O'Toole GA; Plant BJ; Ryan RP
    ISME J; 2012 May; 6(5):939-50. PubMed ID: 22134647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pseudomonas aeruginosa
    Van Laar TA; Esani S; Birges TJ; Hazen B; Thomas JM; Rawat M
    mSphere; 2018 Apr; 3(2):. PubMed ID: 29669887
    [No Abstract]   [Full Text] [Related]  

  • 30. Virulence attributes in Brazilian clinical isolates of Pseudomonas aeruginosa.
    Silva LV; Galdino AC; Nunes AP; dos Santos KR; Moreira BM; Cacci LC; Sodré CL; Ziccardi M; Branquinha MH; Santos AL
    Int J Med Microbiol; 2014 Nov; 304(8):990-1000. PubMed ID: 25127423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prevention of OprD regulated antibiotic resistance in Pseudomonas aeruginosa biofilm.
    Raavi ; Mishra S; Singh S
    Microb Pathog; 2017 Nov; 112():221-229. PubMed ID: 28826769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control.
    Bjarnsholt T; Tolker-Nielsen T; Høiby N; Givskov M
    Expert Rev Mol Med; 2010 Apr; 12():e11. PubMed ID: 20370936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chelated iron sources are inhibitors of Pseudomonas aeruginosa biofilms and distribute efficiently in an in vitro model of drug delivery to the human lung.
    Musk DJ; Hergenrother PJ
    J Appl Microbiol; 2008 Aug; 105(2):380-8. PubMed ID: 18284482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient zinc uptake is critical for the ability of Pseudomonas aeruginosa to express virulence traits and colonize the human lung.
    Mastropasqua MC; Lamont I; Martin LW; Reid DW; D'Orazio M; Battistoni A
    J Trace Elem Med Biol; 2018 Jul; 48():74-80. PubMed ID: 29773197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial cyanogenesis occurs in the cystic fibrosis lung.
    Sanderson K; Wescombe L; Kirov SM; Champion A; Reid DW
    Eur Respir J; 2008 Aug; 32(2):329-33. PubMed ID: 18480103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efflux system overexpression and decreased OprD contribute to the carbapenem heterogeneity in Pseudomonas aeruginosa.
    Ikonomidis A; Tsakris A; Kantzanou M; Spanakis N; Maniatis AN; Pournaras S
    FEMS Microbiol Lett; 2008 Feb; 279(1):36-9. PubMed ID: 18070070
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of patients with Pseudomonas aeruginosa respiratory tract infections at greatest risk of infection with carbapenem-resistant isolates.
    Lodise TP; Miller C; Patel N; Graves J; McNutt LA
    Infect Control Hosp Epidemiol; 2007 Aug; 28(8):959-65. PubMed ID: 17620244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa.
    Gooderham WJ; Hancock RE
    FEMS Microbiol Rev; 2009 Mar; 33(2):279-94. PubMed ID: 19243444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production.
    Lee JH; Kim YG; Cho MH; Lee J
    Microbiol Res; 2014 Dec; 169(12):888-96. PubMed ID: 24958247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting quorum sensing in Pseudomonas aeruginosa biofilms: current and emerging inhibitors.
    Jakobsen TH; Bjarnsholt T; Jensen PØ; Givskov M; Høiby N
    Future Microbiol; 2013 Jul; 8(7):901-21. PubMed ID: 23841636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.