These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25448686)

  • 1. The evaluation of new multi-material human soft tissue simulants for sports impact surrogates.
    Payne T; Mitchell S; Bibb R; Waters M
    J Mech Behav Biomed Mater; 2015 Jan; 41():336-56. PubMed ID: 25448686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of novel synthetic muscle tissues for sports impact surrogates.
    Payne T; Mitchell S; Bibb R; Waters M
    J Mech Behav Biomed Mater; 2015 Jan; 41():357-74. PubMed ID: 25260952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Nonlinear Viscoelastic Model for Adipose Tissue Representing Tissue Response at a Wide Range of Strain Rates and High Strain Levels.
    Naseri H; Johansson H; Brolin K
    J Biomech Eng; 2018 Apr; 140(4):. PubMed ID: 29049689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanical behavior of brain surrogates manufactured from silicone elastomers.
    Zhang L; Jackson WJ; Bentil SA
    J Mech Behav Biomed Mater; 2019 Jul; 95():180-190. PubMed ID: 31009902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable mechanical behavior of synthetic organogels as biofidelic tissue simulants.
    Kalcioglu ZI; Mrozek RA; Mahmoodian R; VanLandingham MR; Lenhart JL; Van Vliet KJ
    J Biomech; 2013 May; 46(9):1583-91. PubMed ID: 23623681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-material 3-D viscoelastic model of a transtibial residuum from in-vivo indentation and MRI data.
    Sengeh DM; Moerman KM; Petron A; Herr H
    J Mech Behav Biomed Mater; 2016 Jun; 59():379-392. PubMed ID: 26946095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive formulation and numerical analysis of the biomechanical behaviour of forefoot plantar soft tissue.
    Fontanella CG; Favaretto E; Carniel EL; Natali AN
    Proc Inst Mech Eng H; 2014 Sep; 228(9):942-51. PubMed ID: 25313025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structural fingertip model for simulating of the biomechanics of tactile sensation.
    Wu JZ; Dong RG; Rakheja S; Schopper AW; Smutz WP
    Med Eng Phys; 2004 Mar; 26(2):165-75. PubMed ID: 15036184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic and viscoelastic properties of porcine subdermal fat using MRI and inverse FEA.
    Sims AM; Stait-Gardner T; Fong L; Morley JW; Price WS; Hoffman M; Simmons A; Schindhelm K
    Biomech Model Mechanobiol; 2010 Dec; 9(6):703-11. PubMed ID: 20309602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation and modelling of brain tissue for surgical simulation.
    Mendizabal A; Aguinaga I; Sánchez E
    J Mech Behav Biomed Mater; 2015 May; 45():1-10. PubMed ID: 25676499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental data on mechanical behavior and numerical data on tensile stress distribution of a hyperelastic Polydimethysiloxane (PDMS) based membrane for cell culture.
    Limjeerajarus N; Fakkao M; Lampang SN; Osathanon T; Pavasant P; Limjeerajarus CN
    Data Brief; 2020 Jun; 30():105476. PubMed ID: 32300627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for a mechanical characterisation of human gluteal tissue.
    Then C; Menger J; Benderoth G; Alizadeh M; Vogl TJ; Hübner F; Silber G
    Technol Health Care; 2007; 15(6):385-98. PubMed ID: 18057562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin.
    Groves RB; Coulman SA; Birchall JC; Evans SL
    J Mech Behav Biomed Mater; 2013 Feb; 18():167-80. PubMed ID: 23274398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo mechanical response of thigh soft tissues under compression: A two-layer model allows an improved representation of the local tissue kinematics.
    Segain A; Sciume G; Pillet H; Rohan PY
    J Mech Behav Biomed Mater; 2024 Aug; 156():106584. PubMed ID: 38810544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalp simulation - A novel approach to site-specific biomechanical modeling of the skin.
    Pittar N; Winter T; Falland-Cheung L; Tong D; Waddell JN
    J Mech Behav Biomed Mater; 2018 Jan; 77():308-313. PubMed ID: 28961517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital image correlation and finite element modelling as a method to determine mechanical properties of human soft tissue in vivo.
    Moerman KM; Holt CA; Evans SL; Simms CK
    J Biomech; 2009 May; 42(8):1150-3. PubMed ID: 19362312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mesostructurally-based anisotropic continuum model for biological soft tissues--decoupled invariant formulation.
    Limbert G
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1637-57. PubMed ID: 22098866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.
    Demirci N; Tönük E
    Acta Bioeng Biomech; 2014; 16(4):13-21. PubMed ID: 25597890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental characterization and finite element implementation of soft tissue nonlinear viscoelasticity.
    Troyer KL; Shetye SS; Puttlitz CM
    J Biomech Eng; 2012 Nov; 134(11):114501. PubMed ID: 23387789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.