These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 25448752)

  • 1. Therapeutic strategies of diabetic nephropathy: recent progress and future perspectives.
    Lv M; Chen Z; Hu G; Li Q
    Drug Discov Today; 2015 Mar; 20(3):332-46. PubMed ID: 25448752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting inflammation in diabetic nephropathy: a tale of hope.
    Moreno JA; Gomez-Guerrero C; Mas S; Sanz AB; Lorenzo O; Ruiz-Ortega M; Opazo L; Mezzano S; Egido J
    Expert Opin Investig Drugs; 2018 Nov; 27(11):917-930. PubMed ID: 30334635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Management of diabetic nephropathy: Recent progress and future perspective.
    Ahmad J
    Diabetes Metab Syndr; 2015; 9(4):343-58. PubMed ID: 25845297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Molecular mechanism of diabetic nephropathy].
    Ohshiro Y; Takasu N
    Nihon Rinsho; 2006 May; 64(5):997-1003. PubMed ID: 16689387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards Better Drug Repositioning: Targeted Immunoinflammatory Therapy for Diabetic Nephropathy.
    Zhang Q; Yang M; Xiao Y; Han Y; Yang S; Sun L
    Curr Med Chem; 2021; 28(5):1003-1024. PubMed ID: 31701843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diabetic Nephropathy: a Tangled Web to Unweave.
    Magee C; Grieve DJ; Watson CJ; Brazil DP
    Cardiovasc Drugs Ther; 2017 Dec; 31(5-6):579-592. PubMed ID: 28956186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy.
    Rayego-Mateos S; Morgado-Pascual JL; Opazo-Ríos L; Guerrero-Hue M; García-Caballero C; Vázquez-Carballo C; Mas S; Sanz AB; Herencia C; Mezzano S; Gómez-Guerrero C; Moreno JA; Egido J
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32471207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in pharmacotherapy for diabetic nephropathy: current perspectives and future directions.
    Balakumar P; Arora MK; Ganti SS; Reddy J; Singh M
    Pharmacol Res; 2009 Jul; 60(1):24-32. PubMed ID: 19427582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of 1-(4-((3-(4-methylpiperazin-1-yl)propyl)amino)benzyl)-5-(trifluoromethyl)pyridin-2(1H)-one, an orally active multi-target agent for the treatment of diabetic nephropathy.
    Chen J; Peng Z; Lu M; Xiong X; Chen Z; Li Q; Cheng Z; Jiang D; Tao L; Hu G
    Bioorg Med Chem Lett; 2018 Jan; 28(2):222-229. PubMed ID: 29248299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diabetic nephropathy: An update on pathogenesis and drug development.
    A/L B Vasanth Rao VR; Tan SH; Candasamy M; Bhattamisra SK
    Diabetes Metab Syndr; 2019; 13(1):754-762. PubMed ID: 30641802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein kinase C beta inhibitors: a new therapeutic target for diabetic nephropathy and vascular complications.
    Budhiraja S; Singh J
    Fundam Clin Pharmacol; 2008 Jun; 22(3):231-40. PubMed ID: 18485142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AMPK allostery: A therapeutic target for the management/treatment of diabetic nephropathy.
    Ayinde KS; Olaoba OT; Ibrahim B; Lei D; Lu Q; Yin X; Adelusi TI
    Life Sci; 2020 Nov; 261():118455. PubMed ID: 32956662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update.
    Bhattacharjee N; Barma S; Konwar N; Dewanjee S; Manna P
    Eur J Pharmacol; 2016 Nov; 791():8-24. PubMed ID: 27568833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy.
    Elmarakby AA; Sullivan JC
    Cardiovasc Ther; 2012 Feb; 30(1):49-59. PubMed ID: 20718759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New therapeutic agents in diabetic nephropathy.
    Kim Y; Park CW
    Korean J Intern Med; 2017 Jan; 32(1):11-25. PubMed ID: 28049280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inflammation and oxidative stress in diabetic nephropathy: new insights on its inhibition as new therapeutic targets.
    Mima A
    J Diabetes Res; 2013; 2013():248563. PubMed ID: 23862164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective role of low-dose TGF-β1 in early diabetic nephropathy induced by streptozotocin.
    Ma X; Ding J; Min H; Wen Y; Gao Q
    Int Immunopharmacol; 2013 Nov; 17(3):752-8. PubMed ID: 24055008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of aspirin with telmisartan suppresses the augmented TGFbeta/smad signaling during the development of streptozotocin-induced type I diabetic nephropathy.
    Mulay SR; Gaikwad AB; Tikoo K
    Chem Biol Interact; 2010 Apr; 185(2):137-42. PubMed ID: 20223228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone Acetylation and Its Modifiers in the Pathogenesis of Diabetic Nephropathy.
    Li X; Li C; Sun G
    J Diabetes Res; 2016; 2016():4065382. PubMed ID: 27379253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetic nephropathy and long-term treatment effects of rosiglitazone and enalapril in obese ZSF1 rats.
    Bilan VP; Salah EM; Bastacky S; Jones HB; Mayers RM; Zinker B; Poucher SM; Tofovic SP
    J Endocrinol; 2011 Sep; 210(3):293-308. PubMed ID: 21680617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.