These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 25448951)
21. Sub-100 nm TiO2 mesocrystalline assemblies with mesopores: preparation, characterization, enzyme immobilization and photocatalytic properties. Tartaj P Chem Commun (Camb); 2011 Jan; 47(1):256-8. PubMed ID: 20623066 [TBL] [Abstract][Full Text] [Related]
22. Influence of anatase and rutile phase in TiO2 upon the photocatalytic degradation of methylene blue under solar irradiation in presence of activated carbon. Matos J; Montaña R; Rivero E; Escudero A; Uzcategui D Water Sci Technol; 2014; 69(11):2184-90. PubMed ID: 24901611 [TBL] [Abstract][Full Text] [Related]
23. Effective photocatalysis of functional nanocomposites based on carbon and TiO2 nanoparticles. Lin C; Song Y; Cao L; Chen S Nanoscale; 2013 Jun; 5(11):4986-92. PubMed ID: 23636102 [TBL] [Abstract][Full Text] [Related]
24. Vapor-phase photo-oxidation of methanol over nano-size titanium dioxide clusters dispersed in MCM-41 host material part 2: catalytic properties and surface transient species. Bhattacharyya K; Varma S; Kumar D; Tripathi AK; Gupta NM J Nanosci Nanotechnol; 2005 May; 5(5):797-805. PubMed ID: 16010942 [TBL] [Abstract][Full Text] [Related]
25. Hierarchical assembly of TiO2-SrTiO3 heterostructures on conductive SnO2 backbone nanobelts for enhanced photoelectrochemical and photocatalytic performance. Park S; Kim S; Kim HJ; Lee CW; Song HJ; Seo SW; Park HK; Kim DW; Hong KS J Hazard Mater; 2014 Jun; 275():10-8. PubMed ID: 24830569 [TBL] [Abstract][Full Text] [Related]
26. Effect of Fe-doped TiO2 nanoparticle derived from modified hydrothermal process on the photocatalytic degradation performance on methylene blue. Li Z; Shen W; He W; Zu X J Hazard Mater; 2008 Jul; 155(3):590-4. PubMed ID: 18179869 [TBL] [Abstract][Full Text] [Related]
27. TiO₂ (rutile) embedded inulin--A versatile bio-nanocomposite for photocatalytic degradation of methylene blue. Jayanthi Kalaivani G; Suja SK Carbohydr Polym; 2016 Jun; 143():51-60. PubMed ID: 27083343 [TBL] [Abstract][Full Text] [Related]
28. Effect of Nb doping on structural, optical and photocatalytic properties of flame-made TiO2 nanopowder. Michalow KA; Flak D; Heel A; Parlinska-Wojtan M; Rekas M; Graule T Environ Sci Pollut Res Int; 2012 Nov; 19(9):3696-708. PubMed ID: 23054731 [TBL] [Abstract][Full Text] [Related]
29. Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. Sun L; Zhao Z; Zhou Y; Liu L Nanoscale; 2012 Jan; 4(2):613-20. PubMed ID: 22159272 [TBL] [Abstract][Full Text] [Related]
30. Characterization and photocatalytic activity of vanadium-doped titanium dioxide nanocatalysts. Chang PY; Huang CH; Doong RA Water Sci Technol; 2009; 59(3):523-30. PubMed ID: 19214007 [TBL] [Abstract][Full Text] [Related]
31. Photodegradation of phenanthrene by N-doped TiO2 photocatalyst. Sirisaksoontorn W; Thachepan S; Songsasen A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Jul; 44(9):841-6. PubMed ID: 19799052 [TBL] [Abstract][Full Text] [Related]
32. Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream. Ling CM; Mohamed AR; Bhatia S Chemosphere; 2004 Nov; 57(7):547-54. PubMed ID: 15488916 [TBL] [Abstract][Full Text] [Related]
33. Controlled fabrication of porous double-walled TiO2 nanotubes via ultraviolet-assisted anodization. Ali G; Kim HJ; Kim JJ; Cho SO Nanoscale; 2014 Apr; 6(7):3632-7. PubMed ID: 24562049 [TBL] [Abstract][Full Text] [Related]
34. Preparation of TiO2-MoO3 nano-composite photo-catalyst by supercritical fluid dry method. Zhang JC; Li Q; Cao WL J Environ Sci (China); 2005; 17(2):350-2. PubMed ID: 16295920 [TBL] [Abstract][Full Text] [Related]
35. New anatase-type Til-2xNbxAlxO2 solid solution nanoparticles: direct formation, phase stability, and photocatalytic performance. Hirano M; Ito T J Nanosci Nanotechnol; 2006 Dec; 6(12):3820-7. PubMed ID: 17256336 [TBL] [Abstract][Full Text] [Related]
36. Flower-like TiO2 nanostructures with exposed {001} facets: facile synthesis and enhanced photocatalysis. Liu M; Piao L; Lu W; Ju S; Zhao L; Zhou C; Li H; Wang W Nanoscale; 2010 Jul; 2(7):1115-7. PubMed ID: 20644783 [TBL] [Abstract][Full Text] [Related]
37. Enhancing photocatalytic activities of titanium dioxide via well-dispersed copper nanoparticles. Dong J; Ye J; Ariyanti D; Wang Y; Wei S; Gao W Chemosphere; 2018 Aug; 204():193-201. PubMed ID: 29656155 [TBL] [Abstract][Full Text] [Related]
38. Synthesis and photocatalytic activity of stable nanocrystalline TiO(2) with high crystallinity and large surface area. Tian G; Fu H; Jing L; Tian C J Hazard Mater; 2009 Jan; 161(2-3):1122-30. PubMed ID: 18524477 [TBL] [Abstract][Full Text] [Related]
39. Photodegradation of organic pollutants in water and green hydrogen production via methanol photoreforming of doped titanium oxide nanoparticles. Rico-Oller B; Boudjemaa A; Bahruji H; Kebir M; Prashar S; Bachari K; Fajardo M; Gómez-Ruiz S Sci Total Environ; 2016 Sep; 563-564():921-32. PubMed ID: 26524993 [TBL] [Abstract][Full Text] [Related]
40. Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants. Doh SJ; Kim C; Lee SG; Lee SJ; Kim H J Hazard Mater; 2008 Jun; 154(1-3):118-27. PubMed ID: 18006150 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]