BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25449016)

  • 21. Engineering microbial cell factories: Metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products.
    Heider SA; Wendisch VF
    Biotechnol J; 2015 Aug; 10(8):1170-84. PubMed ID: 26216246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial production of 4-amino-1-butanol, a four-carbon amino alcohol.
    Prabowo CPS; Shin JH; Cho JS; Chae TU; Lee SY
    Biotechnol Bioeng; 2020 Sep; 117(9):2771-2780. PubMed ID: 32436991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.
    Feng L; Zhang Y; Fu J; Mao Y; Chen T; Zhao X; Wang Z
    Biotechnol Bioeng; 2016 Jun; 113(6):1284-93. PubMed ID: 26616115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum.
    Chen T; Zhu N; Xia H
    Bioresour Technol; 2014 Jan; 151():411-4. PubMed ID: 24169202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum.
    Brune I; Werner H; Hüser AT; Kalinowski J; Pühler A; Tauch A
    BMC Genomics; 2006 Feb; 7():21. PubMed ID: 16469103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce L-methionine.
    Qin T; Hu X; Hu J; Wang X
    Biotechnol Appl Biochem; 2015; 62(4):563-73. PubMed ID: 25196586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression of ribosome elongation factor G and recycling factor increases L-isoleucine production in Corynebacterium glutamicum.
    Zhao J; Hu X; Li Y; Wang X
    Appl Microbiol Biotechnol; 2015 Jun; 99(11):4795-805. PubMed ID: 25707863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of ʟ-ornithine production in recombinant Corynebacterium glutamicum S9114 by cg3035 overexpression and manipulating the central metabolic pathway.
    Zhang B; Yu M; Wei WP; Ye BC
    Microb Cell Fact; 2018 Jun; 17(1):91. PubMed ID: 29898721
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Negative transcriptional control of biotin metabolism genes by the TetR-type regulator BioQ in biotin-auxotrophic Corynebacterium glutamicum ATCC 13032.
    Brune I; Götker S; Schneider J; Rodionov DA; Tauch A
    J Biotechnol; 2012 Jun; 159(3):225-34. PubMed ID: 22178235
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids.
    Kallscheuer N; Marienhagen J
    Microb Cell Fact; 2018 May; 17(1):70. PubMed ID: 29753327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes.
    Sindelar G; Wendisch VF
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):677-89. PubMed ID: 17364200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering Corynebacterium glutamicum for the production of pyruvate.
    Wieschalka S; Blombach B; Eikmanns BJ
    Appl Microbiol Biotechnol; 2012 Apr; 94(2):449-59. PubMed ID: 22228312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum.
    Zou Y; Chen T; Feng L; Zhang S; Xing D; Wang Z
    Biotechnol Lett; 2017 Sep; 39(9):1369-1374. PubMed ID: 28536938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. L-Cysteine production by metabolically engineered Corynebacterium glutamicum.
    Kondoh M; Hirasawa T
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2609-2619. PubMed ID: 30729285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering of Corynebacterium glutamicum for L-cysteine production.
    Wei L; Wang H; Xu N; Zhou W; Ju J; Liu J; Ma Y
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1325-1338. PubMed ID: 30564850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.
    Mizuno Y; Nagano-Shoji M; Kubo S; Kawamura Y; Yoshida A; Kawasaki H; Nishiyama M; Yoshida M; Kosono S
    Microbiologyopen; 2016 Feb; 5(1):152-73. PubMed ID: 26663479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum.
    Kind S; Kreye S; Wittmann C
    Metab Eng; 2011 Sep; 13(5):617-27. PubMed ID: 21821142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation.
    Yamamoto S; Suda M; Niimi S; Inui M; Yukawa H
    Biotechnol Bioeng; 2013 Nov; 110(11):2938-48. PubMed ID: 23737329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering of a hybrid route to enhance shikimic acid production in Corynebacterium glutamicum.
    Zhang B; Jiang CY; Liu YM; Liu C; Liu SJ
    Biotechnol Lett; 2015 Sep; 37(9):1861-8. PubMed ID: 25967037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system.
    Zhu N; Xia H; Yang J; Zhao X; Chen T
    Biotechnol Lett; 2014 Mar; 36(3):553-60. PubMed ID: 24129953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.