BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

685 related articles for article (PubMed ID: 25449133)

  • 1. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall.
    Yu C; Gan H; Han J; Zhou ZX; Jia S; Chabes A; Farrugia G; Ordog T; Zhang Z
    Mol Cell; 2014 Nov; 56(4):551-63. PubMed ID: 25449133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork.
    Schauer GD; O'Donnell ME
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):675-680. PubMed ID: 28069954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation.
    Kubota T; Katou Y; Nakato R; Shirahige K; Donaldson AD
    Cell Rep; 2015 Aug; 12(5):774-87. PubMed ID: 26212319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Both DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently.
    Yu C; Gan H; Zhang Z
    Mol Cell Biol; 2017 Nov; 37(21):. PubMed ID: 28784720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress.
    Gan H; Yu C; Devbhandari S; Sharma S; Han J; Chabes A; Remus D; Zhang Z
    Mol Cell; 2017 Oct; 68(2):446-455.e3. PubMed ID: 29033319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structure-function analysis of the yeast Elg1 protein reveals the importance of PCNA unloading in genome stability maintenance.
    Shemesh K; Sebesta M; Pacesa M; Sau S; Bronstein A; Parnas O; Liefshitz B; Venclovas C; Krejci L; Kupiec M
    Nucleic Acids Res; 2017 Apr; 45(6):3189-3203. PubMed ID: 28108661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases α, δ, and ε in Saccharomyces cerevisiae.
    Dubarry M; Lawless C; Banks AP; Cockell S; Lydall D
    G3 (Bethesda); 2015 Aug; 5(10):2187-97. PubMed ID: 26297725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PCNA Deubiquitylases Control DNA Damage Bypass at Replication Forks.
    Álvarez V; Frattini C; Sacristán MP; Gallego-Sánchez A; Bermejo R; Bueno A
    Cell Rep; 2019 Oct; 29(5):1323-1335.e5. PubMed ID: 31665643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rad53 arrests leading and lagging strand DNA synthesis via distinct mechanisms in response to DNA replication stress.
    He R; Zhang Z
    Bioessays; 2022 Sep; 44(9):e2200061. PubMed ID: 35778827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strand-Specific Analysis of DNA Synthesis and Proteins Association with DNA Replication Forks in Budding Yeast.
    Yu C; Gan H; Zhang Z
    Methods Mol Biol; 2018; 1672():227-238. PubMed ID: 29043628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin Constrains the Initiation and Elongation of DNA Replication.
    Devbhandari S; Jiang J; Kumar C; Whitehouse I; Remus D
    Mol Cell; 2017 Jan; 65(1):131-141. PubMed ID: 27989437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Elg1 replication factor C-like complex functions in PCNA unloading during DNA replication.
    Kubota T; Nishimura K; Kanemaki MT; Donaldson AD
    Mol Cell; 2013 Apr; 50(2):273-80. PubMed ID: 23499004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Yeast PCNA Unloader Elg1 RFC-Like Complex Plays a Role in Eliciting the DNA Damage Checkpoint.
    Sau S; Liefshitz B; Kupiec M
    mBio; 2019 Jun; 10(3):. PubMed ID: 31186330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How the Eukaryotic Replisome Achieves Rapid and Efficient DNA Replication.
    Yeeles JTP; Janska A; Early A; Diffley JFX
    Mol Cell; 2017 Jan; 65(1):105-116. PubMed ID: 27989442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rad53 limits CMG helicase uncoupling from DNA synthesis at replication forks.
    Devbhandari S; Remus D
    Nat Struct Mol Biol; 2020 May; 27(5):461-471. PubMed ID: 32341532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork.
    Georgescu RE; Langston L; Yao NY; Yurieva O; Zhang D; Finkelstein J; Agarwal T; O'Donnell ME
    Nat Struct Mol Biol; 2014 Aug; 21(8):664-70. PubMed ID: 24997598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication.
    Ohashi E; Tsurimoto T
    Adv Exp Med Biol; 2017; 1042():135-162. PubMed ID: 29357057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. More division of labor at the eukaryotic replication fork.
    Plosky BS
    Mol Cell; 2014 Nov; 56(4):467-8. PubMed ID: 25459878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA Polymerase Delta Synthesizes Both Strands during Break-Induced Replication.
    Donnianni RA; Zhou ZX; Lujan SA; Al-Zain A; Garcia V; Glancy E; Burkholder AB; Kunkel TA; Symington LS
    Mol Cell; 2019 Nov; 76(3):371-381.e4. PubMed ID: 31495565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA.
    Chilkova O; Stenlund P; Isoz I; Stith CM; Grabowski P; Lundström EB; Burgers PM; Johansson E
    Nucleic Acids Res; 2007; 35(19):6588-97. PubMed ID: 17905813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.