BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25449742)

  • 1. Population receptive field estimates of human auditory cortex.
    Thomas JM; Huber E; Stecker GC; Boynton GM; Saenz M; Fine I
    Neuroimage; 2015 Jan; 105():428-39. PubMed ID: 25449742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tonotopic gradients in human primary auditory cortex: concurring evidence from high-resolution 7 T and 3 T fMRI.
    Da Costa S; Saenz M; Clarke S; van der Zwaag W
    Brain Topogr; 2015 Jan; 28(1):66-9. PubMed ID: 25098273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tonotopic mapping of human auditory cortex.
    Saenz M; Langers DR
    Hear Res; 2014 Jan; 307():42-52. PubMed ID: 23916753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the human auditory cortex using spectrotemporal receptive fields generated with magnetoencephalography.
    Falet JR; Côté J; Tarka V; Martínez-Moreno ZE; Voss P; de Villers-Sidani E
    Neuroimage; 2021 Sep; 238():118222. PubMed ID: 34058330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct Representations of Tonotopy and Pitch in Human Auditory Cortex.
    Allen EJ; Mesik J; Kay KN; Oxenham AJ
    J Neurosci; 2022 Jan; 42(3):416-434. PubMed ID: 34799415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method for estimating population receptive field topography in visual cortex.
    Lee S; Papanikolaou A; Logothetis NK; Smirnakis SM; Keliris GA
    Neuroimage; 2013 Nov; 81():144-157. PubMed ID: 23684878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High fidelity tonotopic mapping using swept source functional magnetic resonance imaging.
    Cheung MM; Lau C; Zhou IY; Chan KC; Zhang JW; Fan SJ; Wu EX
    Neuroimage; 2012 Jul; 61(4):978-86. PubMed ID: 22445952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracortical depth analyses of frequency-sensitive regions of human auditory cortex using 7TfMRI.
    Ahveninen J; Chang WT; Huang S; Keil B; Kopco N; Rossi S; Bonmassar G; Witzel T; Polimeni JR
    Neuroimage; 2016 Dec; 143():116-127. PubMed ID: 27608603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroimaging paradigms for tonotopic mapping (II): the influence of acquisition protocol.
    Langers DR; Sanchez-Panchuelo RM; Francis ST; Krumbholz K; Hall DA
    Neuroimage; 2014 Oct; 100():663-75. PubMed ID: 25067814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping tonotopy in human auditory cortex.
    van Dijk P; Langers DR
    Adv Exp Med Biol; 2013; 787():419-25. PubMed ID: 23716248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial interaction between spectral integration and frequency gradient in primary auditory cortex.
    Imaizumi K; Schreiner CE
    J Neurophysiol; 2007 Nov; 98(5):2933-42. PubMed ID: 17855587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-specific attentional modulation in human primary auditory cortex and midbrain.
    Riecke L; Peters JC; Valente G; Poser BA; Kemper VG; Formisano E; Sorger B
    Neuroimage; 2018 Jul; 174():274-287. PubMed ID: 29571712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mirror-symmetric tonotopic maps in human primary auditory cortex.
    Formisano E; Kim DS; Di Salle F; van de Moortele PF; Ugurbil K; Goebel R
    Neuron; 2003 Nov; 40(4):859-69. PubMed ID: 14622588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroimaging paradigms for tonotopic mapping (I): the influence of sound stimulus type.
    Langers DR; Krumbholz K; Bowtell RW; Hall DA
    Neuroimage; 2014 Oct; 100():650-62. PubMed ID: 25069046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of tonotopically organised subdivisions in human auditory cortex using volumetric and surface-based cortical alignments.
    Langers DR
    Hum Brain Mapp; 2014 Apr; 35(4):1544-61. PubMed ID: 23633425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A second-order orientation-contrast stimulus for population-receptive-field-based retinotopic mapping.
    Yildirim F; Carvalho J; Cornelissen FW
    Neuroimage; 2018 Jan; 164():183-193. PubMed ID: 28666882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reducing the interval between volume acquisitions improves "sparse" scanning protocols in event-related auditory fMRI.
    Liem F; Lutz K; Luechinger R; Jäncke L; Meyer M
    Brain Topogr; 2012 Apr; 25(2):182-93. PubMed ID: 22015572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intersession reliability of population receptive field estimates.
    van Dijk JA; de Haas B; Moutsiana C; Schwarzkopf DS
    Neuroimage; 2016 Dec; 143():293-303. PubMed ID: 27620984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human primary auditory cortex follows the shape of Heschl's gyrus.
    Da Costa S; van der Zwaag W; Marques JP; Frackowiak RS; Clarke S; Saenz M
    J Neurosci; 2011 Oct; 31(40):14067-75. PubMed ID: 21976491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complexity of frequency receptive fields predicts tonotopic variability across species.
    Gaucher Q; Panniello M; Ivanov AZ; Dahmen JC; King AJ; Walker KM
    Elife; 2020 May; 9():. PubMed ID: 32420865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.