BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25449834)

  • 21. Proteomic Analysis of Embryo Isolated From Mature
    Ramzan A; Shah M; Ullah N; Sheheryar ; Nascimento JRS; Campos FAP; Domont GB; Nogueira FCS; Abdellattif MH
    Front Plant Sci; 2022; 13():843764. PubMed ID: 35371174
    [No Abstract]   [Full Text] [Related]  

  • 22. Identification of an oleosin-like gene in seagrass seeds.
    Pasaribu B; Wang MMC; Jiang PL
    Biotechnol Lett; 2017 Nov; 39(11):1757-1763. PubMed ID: 28871433
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New Insights Into the Role of Seed Oil Body Proteins in Metabolism and Plant Development.
    Shao Q; Liu X; Su T; Ma C; Wang P
    Front Plant Sci; 2019; 10():1568. PubMed ID: 31921234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. JCDB: a comprehensive knowledge base for Jatropha curcas, an emerging model for woody energy plants.
    Zhang X; Pan BZ; Chen M; Chen W; Li J; Xu ZF; Liu C
    BMC Genomics; 2019 Dec; 20(Suppl 9):958. PubMed ID: 31874631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomic Analysis of the Endosperm Ontogeny of Jatropha curcas L. Seeds.
    Shah M; Soares EL; Carvalho PC; Soares AA; Domont GB; Nogueira FC; Campos FA
    J Proteome Res; 2015 Jun; 14(6):2557-68. PubMed ID: 25920442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extended mining of the oil biosynthesis pathway in biofuel plant Jatropha curcas by combined analysis of transcriptome and gene interactome data.
    Zhang X; Li J; Pan BZ; Chen W; Chen M; Tang M; Xu ZF; Liu C
    BMC Bioinformatics; 2021 Aug; 22(Suppl 6):409. PubMed ID: 34407772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. LC-MS/MS methods for absolute quantification and identification of proteins associated with chimeric plant oil bodies.
    Capuano F; Bond NJ; Gatto L; Beaudoin F; Napier JA; Benvenuto E; Lilley KS; Baschieri S
    Anal Chem; 2011 Dec; 83(24):9267-72. PubMed ID: 22017570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds.
    Natarajan P; Kanagasabapathy D; Gunadayalan G; Panchalingam J; Shree N; Sugantham PA; Singh KK; Madasamy P
    BMC Genomics; 2010 Oct; 11():606. PubMed ID: 20979643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of seed phorbol-ester and curcin content together with genetic diversity in multiple provenances of Jatropha curcas L. from Madagascar and Mexico.
    He W; King AJ; Khan MA; Cuevas JA; Ramiaramanana D; Graham IA
    Plant Physiol Biochem; 2011 Oct; 49(10):1183-90. PubMed ID: 21835630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A two-chain aspartic protease present in seeds with high affinity for peanut oil bodies.
    Chen Y; Chen Y; Zhao L; Kong X; Yang Z; Hua Y
    Food Chem; 2018 Feb; 241():443-451. PubMed ID: 28958552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas.
    Kim MJ; Yang SW; Mao HZ; Veena SP; Yin JL; Chua NH
    Biotechnol Biofuels; 2014 Mar; 7(1):36. PubMed ID: 24606605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identifying microRNAs and transcript targets in Jatropha seeds.
    Galli V; Guzman F; de Oliveira LF; Loss-Morais G; Körbes AP; Silva SD; Margis-Pinheiro MM; Margis R
    PLoS One; 2014; 9(2):e83727. PubMed ID: 24551031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of Oil Body and Starch Granule Dynamics in Developing Seeds of
    Chen K; Yin Y; Ding Y; Chao H; Li M
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835614
    [No Abstract]   [Full Text] [Related]  

  • 34. Toward characterizing germination and early growth in the non-orthodox forest tree species Quercus ilex through complementary gel and gel-free proteomic analysis of embryo and seedlings.
    Romero-Rodríguez MC; Jorrín-Novo JV; Castillejo MA
    J Proteomics; 2019 Apr; 197():60-70. PubMed ID: 30408563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L.
    Costa GG; Cardoso KC; Del Bem LE; Lima AC; Cunha MA; de Campos-Leite L; Vicentini R; Papes F; Moreira RC; Yunes JA; Campos FA; Da Silva MJ
    BMC Genomics; 2010 Aug; 11():462. PubMed ID: 20691070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A computational study on the structure-function relationships of plant caleosins.
    Saadat F
    Sci Rep; 2023 Jan; 13(1):72. PubMed ID: 36593238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Manipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas.
    Sun Y; Wang C; Wang N; Jiang X; Mao H; Zhu C; Wen F; Wang X; Lu Z; Yue G; Xu Z; Ye J
    Sci Rep; 2017 Jan; 7():40844. PubMed ID: 28102350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of a caleosin associated with hazelnut (Corylus avellana L.) oil bodies.
    Lamberti C; Nebbia S; Balestrini R; Marengo E; Manfredi M; Pavese V; Cirrincione S; Giuffrida MG; Cavallarin L; Acquadro A; Abbà S
    Plant Biol (Stuttg); 2020 May; 22(3):404-409. PubMed ID: 32027456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and characterization of long non-coding RNA (lncRNA) in the developing seeds of Jatropha curcas.
    Yan X; Ma L; Yang M
    Sci Rep; 2020 Jun; 10(1):10395. PubMed ID: 32587349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational identification and phylogenetic analysis of the oil-body structural proteins, oleosin and caleosin, in castor bean and flax.
    Hyun TK; Kumar D; Cho YY; Hyun HN; Kim JS
    Gene; 2013 Feb; 515(2):454-60. PubMed ID: 23232356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.