These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Eicosapentaenoic Acid Inhibits Oxidation of ApoB-containing Lipoprotein Particles of Different Size In Vitro When Administered Alone or in Combination With Atorvastatin Active Metabolite Compared With Other Triglyceride-lowering Agents. Mason RP; Sherratt SC; Jacob RF J Cardiovasc Pharmacol; 2016 Jul; 68(1):33-40. PubMed ID: 26945158 [TBL] [Abstract][Full Text] [Related]
4. Active metabolite of atorvastatin inhibits membrane cholesterol domain formation by an antioxidant mechanism. Mason RP; Walter MF; Day CA; Jacob RF J Biol Chem; 2006 Apr; 281(14):9337-45. PubMed ID: 16464853 [TBL] [Abstract][Full Text] [Related]
5. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes. Mason RP; Jacob RF; Shrivastava S; Sherratt SCR; Chattopadhyay A Biochim Biophys Acta; 2016 Dec; 1858(12):3131-3140. PubMed ID: 27718370 [TBL] [Abstract][Full Text] [Related]
6. Atorvastatin and gemfibrozil metabolites, but not the parent drugs, are potent antioxidants against lipoprotein oxidation. Aviram M; Rosenblat M; Bisgaier CL; Newton RS Atherosclerosis; 1998 Jun; 138(2):271-80. PubMed ID: 9690910 [TBL] [Abstract][Full Text] [Related]
7. Atorvastatin active metabolite inhibits oxidative modification of small dense low-density lipoprotein. Jacob RF; Walter MF; Self-Medlin Y; Mason RP J Cardiovasc Pharmacol; 2013 Aug; 62(2):160-6. PubMed ID: 23575262 [TBL] [Abstract][Full Text] [Related]
8. Eicosapentaenoic acid (EPA) has optimal chain length and degree of unsaturation to inhibit oxidation of small dense LDL and membrane cholesterol domains as compared to related fatty acids in vitro. Sherratt SCR; Juliano RA; Mason RP Biochim Biophys Acta Biomembr; 2020 Jul; 1862(7):183254. PubMed ID: 32135144 [TBL] [Abstract][Full Text] [Related]
9. Eicosapentaenoic acid improves endothelial function and nitric oxide bioavailability in a manner that is enhanced in combination with a statin. Mason RP; Dawoud H; Jacob RF; Sherratt SCR; Malinski T Biomed Pharmacother; 2018 Jul; 103():1231-1237. PubMed ID: 29864903 [TBL] [Abstract][Full Text] [Related]
10. 1,2-naphthoquinone stimulates lipid peroxidation and cholesterol domain formation in model membranes. Jacob RF; Aleo MD; Self-Medlin Y; Doshna CM; Mason RP Invest Ophthalmol Vis Sci; 2013 Nov; 54(12):7189-97. PubMed ID: 24130176 [TBL] [Abstract][Full Text] [Related]
11. Rosmarinic acid and its esters inhibit membrane cholesterol domain formation through an antioxidant mechanism based, in nonlinear fashion, on alkyl chain length. Sherratt SCR; Villeneuve P; Durand E; Mason RP Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):550-555. PubMed ID: 30582915 [TBL] [Abstract][Full Text] [Related]
12. Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review. Jacobson TA; Glickstein SB; Rowe JD; Soni PN J Clin Lipidol; 2012; 6(1):5-18. PubMed ID: 22264569 [TBL] [Abstract][Full Text] [Related]
13. Eicosapentaenoic acid inhibits oxidation of high density lipoprotein particles in a manner distinct from docosahexaenoic acid. Sherratt SCR; Mason RP Biochem Biophys Res Commun; 2018 Feb; 496(2):335-338. PubMed ID: 29331380 [TBL] [Abstract][Full Text] [Related]
14. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. McNulty HP; Byun J; Lockwood SF; Jacob RF; Mason RP Biochim Biophys Acta; 2007 Jan; 1768(1):167-74. PubMed ID: 17070769 [TBL] [Abstract][Full Text] [Related]
15. Physicochemical modifications induced by statins therapy on human erythrocytes membranes. Broncel M; Bała A; Koter-Michalak M; Duchnowicz P; Wojsznis W; Chojnowska-Jezierska J Wiad Lek; 2007; 60(7-8):321-8. PubMed ID: 18175550 [TBL] [Abstract][Full Text] [Related]
16. Eicosapentaenoic acid and docosahexaenoic acid have distinct membrane locations and lipid interactions as determined by X-ray diffraction. Sherratt SCR; Mason RP Chem Phys Lipids; 2018 May; 212():73-79. PubMed ID: 29355517 [TBL] [Abstract][Full Text] [Related]
17. A novel, multi-ingredient supplement to manage elevated blood lipids in patients with no evidence of cardiovascular disease: a pilot study. Hobbs T; Caso R; McMahon D; Nymark M Altern Ther Health Med; 2014; 20(5):18-23. PubMed ID: 25141367 [TBL] [Abstract][Full Text] [Related]
18. Comparative effects of 10-mg versus 80-mg Atorvastatin on high-sensitivity C-reactive protein in patients with stable coronary artery disease: results of the CAP (Comparative Atorvastatin Pleiotropic effects) study. Bonnet J; McPherson R; Tedgui A; Simoneau D; Nozza A; Martineau P; Davignon J; Clin Ther; 2008 Dec; 30(12):2298-313. PubMed ID: 19167589 [TBL] [Abstract][Full Text] [Related]
19. Combined use of extended-release niacin and atorvastatin: safety and effects on lipid modification. Sang ZC; Wang F; Zhou Q; Li YH; Li YG; Wang HP; Chen SY Chin Med J (Engl); 2009 Jul; 122(14):1615-20. PubMed ID: 19719960 [TBL] [Abstract][Full Text] [Related]
20. Cholesterol crystals and atherosclerotic plaque instability: Therapeutic potential of Eicosapentaenoic acid. John Chapman M; Preston Mason R Pharmacol Ther; 2022 Dec; 240():108237. PubMed ID: 35772589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]