These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25450042)

  • 1. Cellular targets for improved manufacturing of virus-based biopharmaceuticals in animal cells.
    Rodrigues AF; Carrondo MJ; Alves PM; Coroadinha AS
    Trends Biotechnol; 2014 Dec; 32(12):602-7. PubMed ID: 25450042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Current Scientific and Regulatory Landscape in Advancing Integrated Continuous Biopharmaceutical Manufacturing.
    Fisher AC; Kamga MH; Agarabi C; Brorson K; Lee SL; Yoon S
    Trends Biotechnol; 2019 Mar; 37(3):253-267. PubMed ID: 30241924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clarification technologies for monoclonal antibody manufacturing processes: Current state and future perspectives.
    Singh N; Arunkumar A; Chollangi S; Tan ZG; Borys M; Li ZJ
    Biotechnol Bioeng; 2016 Apr; 113(4):698-716. PubMed ID: 26302443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives.
    Baeshen MN; Al-Hejin AM; Bora RS; Ahmed MM; Ramadan HA; Saini KS; Baeshen NA; Redwan EM
    J Microbiol Biotechnol; 2015 Jul; 25(7):953-62. PubMed ID: 25737124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous downstream processing of biopharmaceuticals.
    Jungbauer A
    Trends Biotechnol; 2013 Aug; 31(8):479-92. PubMed ID: 23849674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vaccine process technology.
    Josefsberg JO; Buckland B
    Biotechnol Bioeng; 2012 Jun; 109(6):1443-60. PubMed ID: 22407777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guidelines to cell engineering for monoclonal antibody production.
    Rita Costa A; Elisa Rodrigues M; Henriques M; Azeredo J; Oliveira R
    Eur J Pharm Biopharm; 2010 Feb; 74(2):127-38. PubMed ID: 19853660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid and disposable facilities for manufacturing of biopharmaceuticals: pros and cons.
    Ravisé A; Cameau E; De Abreu G; Pralong A
    Adv Biochem Eng Biotechnol; 2009; 115():185-219. PubMed ID: 19623478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals.
    Butler M
    Appl Microbiol Biotechnol; 2005 Aug; 68(3):283-91. PubMed ID: 15834715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioreactor systems for the production of biopharmaceuticals from animal cells.
    Warnock JN; Al-Rubeai M
    Biotechnol Appl Biochem; 2006 Jul; 45(Pt 1):1-12. PubMed ID: 16764553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: current advances.
    Vicente T; Mota JP; Peixoto C; Alves PM; Carrondo MJ
    Biotechnol Adv; 2011; 29(6):869-78. PubMed ID: 21784144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational and systematic protein purification process development: the next generation.
    Nfor BK; Verhaert PD; van der Wielen LA; Hubbuch J; Ottens M
    Trends Biotechnol; 2009 Dec; 27(12):673-9. PubMed ID: 19815300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-use disposable technologies for biopharmaceutical manufacturing.
    Shukla AA; Gottschalk U
    Trends Biotechnol; 2013 Mar; 31(3):147-54. PubMed ID: 23178074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient expression systems for plant-derived biopharmaceuticals.
    Komarova TV; Baschieri S; Donini M; Marusic C; Benvenuto E; Dorokhov YL
    Expert Rev Vaccines; 2010 Aug; 9(8):859-76. PubMed ID: 20673010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of virus-like particle technology from small highly symmetric to large complex virus-like particle structures.
    Pushko P; Pumpens P; Grens E
    Intervirology; 2013; 56(3):141-65. PubMed ID: 23594863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated disposable small scale reactor for high throughput bioprocess development: a proof of concept study.
    Bareither R; Bargh N; Oakeshott R; Watts K; Pollard D
    Biotechnol Bioeng; 2013 Dec; 110(12):3126-38. PubMed ID: 23775295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The future of industrial bioprocessing: batch or continuous?
    Croughan MS; Konstantinov KB; Cooney C
    Biotechnol Bioeng; 2015 Apr; 112(4):648-51. PubMed ID: 25694022
    [No Abstract]   [Full Text] [Related]  

  • 18. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.
    Yongky A; Lee J; Le T; Mulukutla BC; Daoutidis P; Hu WS
    Biotechnol Bioeng; 2015 Jul; 112(7):1437-45. PubMed ID: 25676211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current state-of-the-art in plant-based antibody production systems.
    Donini M; Marusic C
    Biotechnol Lett; 2019 Mar; 41(3):335-346. PubMed ID: 30684155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Future directions for ensuring viral safety of biopharmaceuticals.
    Trent DW
    Dev Biol Stand; 1996; 88():333-5. PubMed ID: 9119159
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.