These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A subviral particle binding domain on the rotavirus nonstructural glycoprotein NS28. Au KS; Mattion NM; Estes MK Virology; 1993 Jun; 194(2):665-73. PubMed ID: 7684873 [TBL] [Abstract][Full Text] [Related]
6. Topography of the simian rotavirus nonstructural glycoprotein (NS28) in the endoplasmic reticulum membrane. Chan WK; Au KS; Estes MK Virology; 1988 Jun; 164(2):435-42. PubMed ID: 2835861 [TBL] [Abstract][Full Text] [Related]
7. Topology of the non-structural rotavirus receptor glycoprotein NS28 in the rough endoplasmic reticulum. Bergmann CC; Maass D; Poruchynsky MS; Atkinson PH; Bellamy AR EMBO J; 1989 Jun; 8(6):1695-703. PubMed ID: 2548854 [TBL] [Abstract][Full Text] [Related]
8. The RER-localized rotavirus intracellular receptor: a truncated purified soluble form is multivalent and binds virus particles. Taylor JA; O'Brien JA; Lord VJ; Meyer JC; Bellamy AR Virology; 1993 Jun; 194(2):807-14. PubMed ID: 8389083 [TBL] [Abstract][Full Text] [Related]
9. Two forms of VP7 are involved in assembly of SA11 rotavirus in endoplasmic reticulum. Kabcenell AK; Poruchynsky MS; Bellamy AR; Greenberg HB; Atkinson PH J Virol; 1988 Aug; 62(8):2929-41. PubMed ID: 2839712 [TBL] [Abstract][Full Text] [Related]
10. Studies on the single-shelled rotavirus receptor with a synthetic peptide derived from the cytoplasmic domain of NS28. Olivo M; Streckert HJ Arch Virol; 1995; 140(12):2151-61. PubMed ID: 8572938 [TBL] [Abstract][Full Text] [Related]
11. NS35 and not vp7 is the soluble rotavirus protein which binds to target cells. Bass DM; Mackow ER; Greenberg HB J Virol; 1990 Jan; 64(1):322-30. PubMed ID: 2152820 [TBL] [Abstract][Full Text] [Related]
12. Sequence analysis of rotavirus YM VP6 and NS28 proteins. López S; Arias CF J Gen Virol; 1993 Jun; 74 ( Pt 6)():1223-6. PubMed ID: 8389808 [TBL] [Abstract][Full Text] [Related]
13. Intracellular manipulation of disulfide bond formation in rotavirus proteins during assembly. Svensson L; Dormitzer PR; von Bonsdorff CH; Maunula L; Greenberg HB J Virol; 1994 Aug; 68(8):5204-15. PubMed ID: 8035518 [TBL] [Abstract][Full Text] [Related]
14. Calcium depletion blocks the maturation of rotavirus by altering the oligomerization of virus-encoded proteins in the ER. Poruchynsky MS; Maass DR; Atkinson PH J Cell Biol; 1991 Aug; 114(4):651-6. PubMed ID: 1651336 [TBL] [Abstract][Full Text] [Related]
15. Rescue of infectivity by sequential in vitro transcapsidation of rotavirus core particles with inner capsid and outer capsid proteins. Chen D; Ramig RF Virology; 1993 Jun; 194(2):743-51. PubMed ID: 8389080 [TBL] [Abstract][Full Text] [Related]
16. Effect of brefeldin A on rotavirus assembly and oligosaccharide processing. Mirazimi A; von Bonsdorff CH; Svensson L Virology; 1996 Mar; 217(2):554-63. PubMed ID: 8610447 [TBL] [Abstract][Full Text] [Related]
17. Temperature-sensitive lesions in the capsid proteins of the rotavirus mutants tsF and tsG that affect virion assembly. Mansell EA; Ramig RF; Patton JT Virology; 1994 Oct; 204(1):69-81. PubMed ID: 8091686 [TBL] [Abstract][Full Text] [Related]
18. Localization of rotavirus antigens in infected cells by ultrastructural immunocytochemistry. Petrie BL; Graham DY; Hanssen H; Estes MK J Gen Virol; 1982 Dec; 63(2):457-67. PubMed ID: 6296288 [TBL] [Abstract][Full Text] [Related]
19. Characterization of rotavirus replication intermediates: a model for the assembly of single-shelled particles. Gallegos CO; Patton JT Virology; 1989 Oct; 172(2):616-27. PubMed ID: 2552662 [TBL] [Abstract][Full Text] [Related]