These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 25450449)
21. Metabolic Engineering of Liu Y; Cen X; Liu D; Chen Z ACS Synth Biol; 2021 Aug; 10(8):1946-1955. PubMed ID: 34264647 [TBL] [Abstract][Full Text] [Related]
22. Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis. Białkowska AM; Jędrzejczak-Krzepkowska M; Gromek E; Krysiak J; Sikora B; Kalinowska H; Kubik C; Schütt F; Turkiewicz M Appl Microbiol Biotechnol; 2016 Mar; 100(6):2663-76. PubMed ID: 26590588 [TBL] [Abstract][Full Text] [Related]
23. A non-pathogenic and optically high concentrated (R,R)-2,3-butanediol biosynthesizing Klebsiella strain. Lee S; Kim B; Yang J; Jeong D; Park S; Lee J J Biotechnol; 2015 Sep; 209():7-13. PubMed ID: 26074000 [TBL] [Abstract][Full Text] [Related]
24. Application of an oxygen-inducible nar promoter system in metabolic engineering for production of biochemicals in Escherichia coli. Hwang HJ; Kim JW; Ju SY; Park JH; Lee PC Biotechnol Bioeng; 2017 Feb; 114(2):468-473. PubMed ID: 27543929 [TBL] [Abstract][Full Text] [Related]
25. In silico and in vivo stability analysis of a heterologous biosynthetic pathway for 1,4-butanediol production in metabolically engineered E. coli. Miklóssy I; Bodor Z; Sinkler R; Orbán KC; Lányi S; Albert B J Biomol Struct Dyn; 2017 Jul; 35(9):1874-1889. PubMed ID: 27492654 [TBL] [Abstract][Full Text] [Related]
26. Adaptive laboratory evolution of Klebsiella pneumoniae for improving 2,3-butanediol production. Li H; Zhang G; Dang Y Bioengineered; 2016 Nov; 7(6):432-438. PubMed ID: 27442598 [TBL] [Abstract][Full Text] [Related]
27. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. Jung MY; Ng CY; Song H; Lee J; Oh MK Appl Microbiol Biotechnol; 2012 Jul; 95(2):461-9. PubMed ID: 22297429 [TBL] [Abstract][Full Text] [Related]
28. Production of optically pure 2,3-butanediol from Miscanthus floridulus hydrolysate using engineered Bacillus licheniformis strains. Gao Y; Huang H; Chen S; Qi G World J Microbiol Biotechnol; 2018 Apr; 34(5):66. PubMed ID: 29687256 [TBL] [Abstract][Full Text] [Related]
29. Production of recombinant bacteriocin divercin V41 by high cell density Escherichia coli batch and fed-batch cultures. Yildirim S; Konrad D; Calvez S; Drider D; Prévost H; Lacroix C Appl Microbiol Biotechnol; 2007 Dec; 77(3):525-31. PubMed ID: 17882416 [TBL] [Abstract][Full Text] [Related]
30. L-Fucose production by engineered Escherichia coli. Liu JJ; Lee JW; Yun EJ; Jung SM; Seo JH; Jin YS Biotechnol Bioeng; 2019 Apr; 116(4):904-911. PubMed ID: 30597526 [TBL] [Abstract][Full Text] [Related]
31. Biosynthesis of enantiopure (S)-3-hydroxybutyric acid in metabolically engineered Escherichia coli. Lee SH; Park SJ; Lee SY; Hong SH Appl Microbiol Biotechnol; 2008 Jun; 79(4):633-41. PubMed ID: 18461320 [TBL] [Abstract][Full Text] [Related]
32. Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Biswas R; Yamaoka M; Nakayama H; Kondo T; Yoshida K; Bisaria VS; Kondo A Appl Microbiol Biotechnol; 2012 May; 94(3):651-8. PubMed ID: 22361854 [TBL] [Abstract][Full Text] [Related]
33. High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts. Shin HD; Yoon SH; Wu J; Rutter C; Kim SW; Chen RR Bioresour Technol; 2012 Aug; 118():367-73. PubMed ID: 22705958 [TBL] [Abstract][Full Text] [Related]
34. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli. Cheng Z; Jiang J; Wu H; Li Z; Ye Q Bioresour Technol; 2016 Jan; 200():897-904. PubMed ID: 26606325 [TBL] [Abstract][Full Text] [Related]
35. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Xu Y; Chu H; Gao C; Tao F; Zhou Z; Li K; Li L; Ma C; Xu P Metab Eng; 2014 May; 23():22-33. PubMed ID: 24525331 [TBL] [Abstract][Full Text] [Related]
36. Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance. Liang K; Shen CR Metab Eng; 2017 Jan; 39():181-191. PubMed ID: 27931827 [TBL] [Abstract][Full Text] [Related]
37. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. Kim SJ; Seo SO; Park YC; Jin YS; Seo JH J Biotechnol; 2014 Dec; 192 Pt B():376-82. PubMed ID: 24480571 [TBL] [Abstract][Full Text] [Related]
38. Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli. Nielsen DR; Yoon SH; Yuan CJ; Prather KL Biotechnol J; 2010 Mar; 5(3):274-84. PubMed ID: 20213636 [TBL] [Abstract][Full Text] [Related]
39. Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition. Li ZJ; Jian J; Wei XX; Shen XW; Chen GQ Appl Microbiol Biotechnol; 2010 Aug; 87(6):2001-9. PubMed ID: 20499229 [TBL] [Abstract][Full Text] [Related]
40. An integrated biotechnology platform for developing sustainable chemical processes. Barton NR; Burgard AP; Burk MJ; Crater JS; Osterhout RE; Pharkya P; Steer BA; Sun J; Trawick JD; Van Dien SJ; Yang TH; Yim H J Ind Microbiol Biotechnol; 2015 Mar; 42(3):349-60. PubMed ID: 25416472 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]