BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25450513)

  • 1. A new concept for obtaining SnO2 fiber-in-tube nanostructures with superior electrochemical properties.
    Hong YJ; Yoon JW; Lee JH; Kang YC
    Chemistry; 2015 Jan; 21(1):371-6. PubMed ID: 25450513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical properties of fiber-in-tube- and filled-structured TiO2 nanofiber anode materials for lithium-ion batteries.
    Cho JS; Hong YJ; Kang YC
    Chemistry; 2015 Jul; 21(31):11082-7. PubMed ID: 26119328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanofibers Comprising Yolk-Shell Sn@void@SnO/SnO₂ and Hollow SnO/SnO₂ and SnO₂ Nanospheres via the Kirkendall Diffusion Effect and Their Electrochemical Properties.
    Cho JS; Kang YC
    Small; 2015 Sep; 11(36):4673-81. PubMed ID: 26058833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries.
    Yang T; Lu B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4115-21. PubMed ID: 24448608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of SnO2 versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries.
    Wang H; Lu X; Li L; Li B; Cao D; Wu Q; Li Z; Yang G; Guo B; Niu C
    Nanoscale; 2016 Apr; 8(14):7595-603. PubMed ID: 26984273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale low temperature fabrication of SnO2 hollow/nanoporous nanostructures: the template-engaged replacement reaction mechanism and high-rate lithium storage.
    Ding YL; Wen Y; van Aken PA; Maier J; Yu Y
    Nanoscale; 2014 Oct; 6(19):11411-8. PubMed ID: 25148613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved electrochemical performance of SnO2-mesoporous carbon hybrid as a negative electrode for lithium ion battery applications.
    Srinivasan NR; Mitra S; Bandyopadhyaya R
    Phys Chem Chem Phys; 2014 Apr; 16(14):6630-40. PubMed ID: 24576943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical properties of tin oxide flake/reduced graphene oxide/carbon composite powders as anode materials for lithium-ion batteries.
    Lee SM; Choi SH; Kang YC
    Chemistry; 2014 Nov; 20(46):15203-7. PubMed ID: 25266199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot facile synthesis of Janus-structured SnO2-CuO composite nanorods and their application as anode materials in Li-ion batteries.
    Choi SH; Kang YC
    Nanoscale; 2013 Jun; 5(11):4662-8. PubMed ID: 23615939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries.
    He M; Yuan L; Hu X; Zhang W; Shu J; Huang Y
    Nanoscale; 2013 Apr; 5(8):3298-305. PubMed ID: 23483088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hollow Core-Shell SnO2/C Fibers as Highly Stable Anodes for Lithium-Ion Batteries.
    Zhou D; Song WL; Fan LZ
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21472-8. PubMed ID: 26348195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Loading Nano-SnO2 Encapsulated in situ in Three-Dimensional Rigid Porous Carbon for Superior Lithium-Ion Batteries.
    Xue H; Zhao J; Tang J; Gong H; He P; Zhou H; Yamauchi Y; He J
    Chemistry; 2016 Mar; 22(14):4915-23. PubMed ID: 26918383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability.
    Xu W; Xie Z; Cui X; Zhao K; Zhang L; Dietrich G; Dooley KM; Wang Y
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22533-41. PubMed ID: 26389757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Synthesis of Bubble-Nanorod-Structured Fe2O3-Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries.
    Cho JS; Hong YJ; Kang YC
    ACS Nano; 2015 Apr; 9(4):4026-35. PubMed ID: 25768655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional SnO₂@TiO₂ double-shell nanotubes on carbon cloth as a flexible anode for lithium-ion batteries.
    Zhang H; Ren W; Cheng C
    Nanotechnology; 2015 Jul; 26(27):274002. PubMed ID: 26082042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kilogram-scale production of SnO(2) yolk-shell powders by a spray-drying process using dextrin as carbon source and drying additive.
    Choi SH; Kang YC
    Chemistry; 2014 May; 20(19):5835-9. PubMed ID: 24665070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotubular Heterostructure of Tin Dioxide/Titanium Dioxide as a Binder-Free Anode in Lithium-Ion Batteries.
    Kim M; Lee J; Lee S; Seo S; Bae C; Shin H
    ChemSusChem; 2015 Jul; 8(14):2363-71. PubMed ID: 25802052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Multi-Wall Sn/SnO
    Gao S; Wang N; Li S; Li D; Cui Z; Yue G; Liu J; Zhao X; Jiang L; Zhao Y
    Angew Chem Int Ed Engl; 2020 Feb; 59(6):2465-2472. PubMed ID: 31788929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries.
    Wang X; Li Z; Zhang Z; Li Q; Guo E; Wang C; Yin L
    Nanoscale; 2015 Feb; 7(8):3604-13. PubMed ID: 25634442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perforated Metal Oxide-Carbon Nanotube Composite Microspheres with Enhanced Lithium-Ion Storage Properties.
    Choi SH; Lee JH; Kang YC
    ACS Nano; 2015 Oct; 9(10):10173-85. PubMed ID: 26355350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.