These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 25450553)
1. Hyaluronic acid/chitosan nanoparticles for delivery of curcuminoid and its in vitro evaluation in glioma cells. Yang L; Gao S; Asghar S; Liu G; Song J; Wang X; Ping Q; Zhang C; Xiao Y Int J Biol Macromol; 2015 Jan; 72():1391-401. PubMed ID: 25450553 [TBL] [Abstract][Full Text] [Related]
2. Nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG containing curcumin: In vitro evaluation and pharmacokinetics in rats. Xu Y; Asghar S; Yang L; Chen Z; Li H; Shi W; Li Y; Shi Q; Ping Q; Xiao Y Int J Biol Macromol; 2017 Sep; 102():1083-1091. PubMed ID: 28472690 [TBL] [Abstract][Full Text] [Related]
3. Chitosan hydrochloride/hyaluronic acid nanoparticles coated by mPEG as long-circulating nanocarriers for systemic delivery of mitoxantrone. Wang J; Asghar S; Yang L; Gao S; Chen Z; Huang L; Zong L; Ping Q; Xiao Y Int J Biol Macromol; 2018 Jul; 113():345-353. PubMed ID: 29486258 [TBL] [Abstract][Full Text] [Related]
4. Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Popat A; Karmakar S; Jambhrunkar S; Xu C; Yu C Colloids Surf B Biointerfaces; 2014 May; 117():520-7. PubMed ID: 24698148 [TBL] [Abstract][Full Text] [Related]
5. Mitoxantrone-loaded chitosan/hyaluronate polyelectrolyte nanoparticles decorated with amphiphilic PEG derivates for long-circulating effect. Wang J; Asghar S; Jin X; Chen Z; Huang L; Ping Q; Zong L; Xiao Y Colloids Surf B Biointerfaces; 2018 Nov; 171():468-477. PubMed ID: 30077147 [TBL] [Abstract][Full Text] [Related]
6. The effect of the molecular weight of hyaluronic acid on the physicochemical characterization of hyaluronic acid-curcumin conjugates and in vitro evaluation in glioma cells. Tian C; Asghar S; Xu Y; Chen Z; Zhang M; Huang L; Ye J; Ping Q; Xiao Y Colloids Surf B Biointerfaces; 2018 May; 165():45-55. PubMed ID: 29453085 [TBL] [Abstract][Full Text] [Related]
7. Polysaccharide-based nanoparticles for co-loading mitoxantrone and verapamil to overcome multidrug resistance in breast tumor. Xu Y; Asghar S; Gao S; Chen Z; Huang L; Yin L; Ping Q; Xiao Y Int J Nanomedicine; 2017; 12():7337-7350. PubMed ID: 29066886 [TBL] [Abstract][Full Text] [Related]
8. Development and optimization of curcumin-loaded mannosylated chitosan nanoparticles using response surface methodology in the treatment of visceral leishmaniasis. Chaubey P; Patel RR; Mishra B Expert Opin Drug Deliv; 2014 Aug; 11(8):1163-81. PubMed ID: 24875148 [TBL] [Abstract][Full Text] [Related]
9. Cytotoxicity of curcumin silica nanoparticle complexes conjugated with hyaluronic acid on colon cancer cells. Singh SP; Sharma M; Gupta PK Int J Biol Macromol; 2015 Mar; 74():162-70. PubMed ID: 25511568 [TBL] [Abstract][Full Text] [Related]
10. Enhanced drug loading on magnetic nanoparticles by layer-by-layer assembly using drug conjugates: blood compatibility evaluation and targeted drug delivery in cancer cells. Manju S; Sreenivasan K Langmuir; 2011 Dec; 27(23):14489-96. PubMed ID: 21988497 [TBL] [Abstract][Full Text] [Related]
11. Lactoferrin-coated polysaccharide nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG for treating brain glioma. Xu Y; Asghar S; Yang L; Li H; Wang Z; Ping Q; Xiao Y Carbohydr Polym; 2017 Feb; 157():419-428. PubMed ID: 27987946 [TBL] [Abstract][Full Text] [Related]
12. Understanding the cellular uptake and biodistribution of a dual-targeting carrier based on redox-sensitive hyaluronic acid-ss-curcumin micelles for treating brain glioma. Tian C; Asghar S; Hu Z; Qiu Y; Zhang J; Shao F; Xiao Y Int J Biol Macromol; 2019 Sep; 136():143-153. PubMed ID: 31199976 [TBL] [Abstract][Full Text] [Related]
13. Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery. Wang F; Yang Y; Ju X; Udenigwe CC; He R J Agric Food Chem; 2018 Mar; 66(11):2685-2693. PubMed ID: 29451796 [TBL] [Abstract][Full Text] [Related]
14. Development of Enteromorpha prolifera polysaccharide-based nanoparticles for delivery of curcumin to cancer cells. Li J; Jiang F; Chi Z; Han D; Yu L; Liu C Int J Biol Macromol; 2018 Jun; 112():413-421. PubMed ID: 29410267 [TBL] [Abstract][Full Text] [Related]
15. A pH-sensitive delivery system based on N-succinyl chitosan-ZnO nanoparticles for improving antibacterial and anticancer activities of curcumin. Ghaffari SB; Sarrafzadeh MH; Salami M; Khorramizadeh MR Int J Biol Macromol; 2020 May; 151():428-440. PubMed ID: 32068061 [TBL] [Abstract][Full Text] [Related]
16. Chitosan coordination driven self-assembly for effective delivery of curcumin. Liang H; Sun X; Gao J; Zhou B Int J Biol Macromol; 2020 Dec; 165(Pt B):2267-2274. PubMed ID: 33098899 [TBL] [Abstract][Full Text] [Related]
17. Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Oyarzun-Ampuero FA; Brea J; Loza MI; Torres D; Alonso MJ Int J Pharm; 2009 Nov; 381(2):122-9. PubMed ID: 19467809 [TBL] [Abstract][Full Text] [Related]
18. Novel hyaluronic acid coated hydrophobically modified chitosan polyelectrolyte complex for the delivery of doxorubicin. Chen L; Zheng Y; Feng L; Liu Z; Guo R; Zhang Y Int J Biol Macromol; 2019 Apr; 126():254-261. PubMed ID: 30584933 [TBL] [Abstract][Full Text] [Related]
19. Preparation of chitosan-coated nanoliposomes for improving the mucoadhesive property of curcumin using the ethanol injection method. Shin GH; Chung SK; Kim JT; Joung HJ; Park HJ J Agric Food Chem; 2013 Nov; 61(46):11119-26. PubMed ID: 24175657 [TBL] [Abstract][Full Text] [Related]