These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 25450611)

  • 1. Impaired cytosolic NADH shuttling and elevated UCP3 contribute to inefficient citric acid cycle flux support of postischemic cardiac work in diabetic hearts.
    Banke NH; Lewandowski ED
    J Mol Cell Cardiol; 2015 Feb; 79():13-20. PubMed ID: 25450611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of the malate-aspartate shuttle by pre-ischaemic aminooxyacetate loading of the heart induces cardioprotection.
    Støttrup NB; Løfgren B; Birkler RD; Nielsen JM; Wang L; Caldarone CA; Kristiansen SB; Contractor H; Johannsen M; Bøtker HE; Nielsen TT
    Cardiovasc Res; 2010 Nov; 88(2):257-66. PubMed ID: 20562422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-ischaemic mitochondrial substrate constraint by inhibition of malate-aspartate shuttle preserves mitochondrial function after ischaemia-reperfusion.
    Jespersen NR; Yokota T; Støttrup NB; Bergdahl A; Paelestik KB; Povlsen JA; Dela F; Bøtker HE
    J Physiol; 2017 Jun; 595(12):3765-3780. PubMed ID: 28093764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recruitment of NADH shuttling in pressure-overloaded and hypertrophic rat hearts.
    Lewandowski ED; O'donnell JM; Scholz TD; Sorokina N; Buttrick PM
    Am J Physiol Cell Physiol; 2007 May; 292(5):C1880-6. PubMed ID: 17229809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial transporter responsiveness and metabolic flux homeostasis in postischemic hearts.
    O'Donnell JM; White LT; Lewandowski ED
    Am J Physiol; 1999 Sep; 277(3):H866-73. PubMed ID: 10484405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Type 1 diabetic akita mouse hearts are insulin sensitive but manifest structurally abnormal mitochondria that remain coupled despite increased uncoupling protein 3.
    Bugger H; Boudina S; Hu XX; Tuinei J; Zaha VG; Theobald HA; Yun UJ; McQueen AP; Wayment B; Litwin SE; Abel ED
    Diabetes; 2008 Nov; 57(11):2924-32. PubMed ID: 18678617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postnatal expression and activity of the mitochondrial 2-oxoglutarate-malate carrier in intact hearts.
    Griffin JL; O'Donnell JM; White LT; Hajjar RJ; Lewandowski ED
    Am J Physiol Cell Physiol; 2000 Dec; 279(6):C1704-9. PubMed ID: 11078684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.
    Zhou L; Stanley WC; Saidel GM; Yu X; Cabrera ME
    J Physiol; 2005 Dec; 569(Pt 3):925-37. PubMed ID: 16223766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose and insulin improve cardiac efficiency and postischemic functional recovery in perfused hearts from type 2 diabetic (db/db) mice.
    Hafstad AD; Khalid AM; How OJ; Larsen TS; Aasum E
    Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1288-94. PubMed ID: 17213470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncoupling protein 3 deficiency impairs myocardial fatty acid oxidation and contractile recovery following ischemia/reperfusion.
    Edwards KS; Ashraf S; Lomax TM; Wiseman JM; Hall ME; Gava FN; Hall JE; Hosler JP; Harmancey R
    Basic Res Cardiol; 2018 Oct; 113(6):47. PubMed ID: 30374710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of uncoupling protein 3 in ischemia-reperfusion injury, arrhythmias, and preconditioning.
    Ozcan C; Palmeri M; Horvath TL; Russell KS; Russell RR
    Am J Physiol Heart Circ Physiol; 2013 May; 304(9):H1192-200. PubMed ID: 23457013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma free fatty acids and peroxisome proliferator-activated receptor alpha in the control of myocardial uncoupling protein levels.
    Murray AJ; Panagia M; Hauton D; Gibbons GF; Clarke K
    Diabetes; 2005 Dec; 54(12):3496-502. PubMed ID: 16306367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial-cytosolic interactions in cardiac tissue: role of the malate-aspartate cycle in the removal of glycolytic NADH from the cytosol.
    Williamson JR; Safer B; LaNoue KF; Smith CM; Walajtys E
    Symp Soc Exp Biol; 1973; 27():241-81. PubMed ID: 4358367
    [No Abstract]   [Full Text] [Related]  

  • 14. [UCP2 and UCP3 gene expression, heart function and oxygen cost of myocardial work changes during aging and ischemia-reperfusion].
    Hoshovs'ka IuV; Lisovyĭ OO; Shymans'ka TV; Sahach VF
    Fiziol Zh (1994); 2009; 55(3):26-36. PubMed ID: 19526854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.
    Greenhouse WV; Lehninger AL
    Cancer Res; 1977 Nov; 37(11):4173-81. PubMed ID: 198130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic fingerprint of ischaemic cardioprotection: importance of the malate-aspartate shuttle.
    Nielsen TT; Støttrup NB; Løfgren B; Bøtker HE
    Cardiovasc Res; 2011 Aug; 91(3):382-91. PubMed ID: 21349875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of cytosolic and mitochondrial oxidation via malate-aspartate shuttle: an observation using dynamic ¹³C NMR spectroscopy.
    Lu M; Banerjee S; Saidel GM; Yu X
    Adv Exp Med Biol; 2011; 701():185-92. PubMed ID: 21445786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infarct-remodelled hearts with limited oxidative capacity boost fatty acid oxidation after conditioning against ischaemia/reperfusion injury.
    Lou PH; Zhang L; Lucchinetti E; Heck M; Affolter A; Gandhi M; Kienesberger PC; Hersberger M; Clanachan AS; Zaugg M
    Cardiovasc Res; 2013 Feb; 97(2):251-61. PubMed ID: 23097573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy substrate metabolism, mitochondrial structure and oxidative stress after cardiac ischemia-reperfusion in mice lacking UCP3.
    Sánchez-Pérez P; Mata A; Torp MK; López-Bernardo E; Heiestad CM; Aronsen JM; Molina-Iracheta A; Jiménez-Borreguero LJ; García-Roves P; Costa ASH; Frezza C; Murphy MP; Stenslokken KO; Cadenas S
    Free Radic Biol Med; 2023 Aug; 205():244-261. PubMed ID: 37295539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Energy metabolism and contractile function of the heart in diabetic cardiomyopathy: effect of ischemia and reperfusion].
    Dzhavadov SA; Dzhokharidze TZ; Dzhaliashvili IV; Gel'fgat EB; Saks VA; Pogacha G
    Biokhimiia; 1992 Dec; 57(12):1917-29. PubMed ID: 1294259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.