These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 25450759)
1. Segmentation of heterogeneous or small FDG PET positive tissue based on a 3D-locally adaptive random walk algorithm. Onoma DP; Ruan S; Thureau S; Nkhali L; Modzelewski R; Monnehan GA; Vera P; Gardin I Comput Med Imaging Graph; 2014 Dec; 38(8):753-63. PubMed ID: 25450759 [TBL] [Abstract][Full Text] [Related]
2. Regarding "Segmentation of heterogeneous or small FDG PET positive tissue based on a 3D-locally adaptive random walk algorithm" By DP. Onoma et al. Hatt M; Visvikis D Comput Med Imaging Graph; 2015 Dec; 46 Pt 3():300-1. PubMed ID: 26494613 [No Abstract] [Full Text] [Related]
3. An algorithm for PET tumor volume and activity quantification: without specifying camera's point spread function (PSF). Bhatt R; Adjouadi M; Goryawala M; Gulec SA; McGoron AJ Med Phys; 2012 Jul; 39(7):4187-202. PubMed ID: 22830752 [TBL] [Abstract][Full Text] [Related]
4. Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model. Montgomery DW; Amira A; Zaidi H Med Phys; 2007 Feb; 34(2):722-36. PubMed ID: 17388190 [TBL] [Abstract][Full Text] [Related]
5. Development of a generic thresholding algorithm for the delineation of 18FDG-PET-positive tissue: application to the comparison of three thresholding models. Vauclin S; Doyeux K; Hapdey S; Edet-Sanson A; Vera P; Gardin I Phys Med Biol; 2009 Nov; 54(22):6901-16. PubMed ID: 19864698 [TBL] [Abstract][Full Text] [Related]
6. A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Belhassen S; Zaidi H Med Phys; 2010 Mar; 37(3):1309-24. PubMed ID: 20384268 [TBL] [Abstract][Full Text] [Related]
7. A Novel Framework for Automated Segmentation and Labeling of Homogeneous Versus Heterogeneous Lung Tumors in [ Soufi M; Kamali-Asl A; Geramifar P; Rahmim A Mol Imaging Biol; 2017 Jun; 19(3):456-468. PubMed ID: 27770402 [TBL] [Abstract][Full Text] [Related]
8. Super-resolution in PET imaging. Kennedy JA; Israel O; Frenkel A; Bar-Shalom R; Azhari H IEEE Trans Med Imaging; 2006 Feb; 25(2):137-47. PubMed ID: 16468448 [TBL] [Abstract][Full Text] [Related]
9. A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients. Day E; Betler J; Parda D; Reitz B; Kirichenko A; Mohammadi S; Miften M Med Phys; 2009 Oct; 36(10):4349-58. PubMed ID: 19928065 [TBL] [Abstract][Full Text] [Related]
10. Assessment of tumour response with (18)F-fluorodeoxyglucose positron emission tomography using three-dimensional measures compared to SUVmax--a phantom study. Boucek JA; Francis RJ; Jones CG; Khan N; Turlach BA; Green AJ Phys Med Biol; 2008 Aug; 53(16):4213-30. PubMed ID: 18653927 [TBL] [Abstract][Full Text] [Related]
11. A lesion detection observer study comparing 2-dimensional versus fully 3-dimensional whole-body PET imaging protocols. Lartizien C; Kinahan PE; Comtat C J Nucl Med; 2004 Apr; 45(4):714-23. PubMed ID: 15073270 [TBL] [Abstract][Full Text] [Related]
12. Partial-volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data. Teo BK; Seo Y; Bacharach SL; Carrasquillo JA; Libutti SK; Shukla H; Hasegawa BH; Hawkins RA; Franc BL J Nucl Med; 2007 May; 48(5):802-10. PubMed ID: 17475970 [TBL] [Abstract][Full Text] [Related]
13. Delineation of FDG-PET tumors from heterogeneous background using spectral clustering. Yang F; Grigsby PW Eur J Radiol; 2012 Nov; 81(11):3535-41. PubMed ID: 22277291 [TBL] [Abstract][Full Text] [Related]
14. Combining multiple FDG-PET radiotherapy target segmentation methods to reduce the effect of variable performance of individual segmentation methods. McGurk RJ; Bowsher J; Lee JA; Das SK Med Phys; 2013 Apr; 40(4):042501. PubMed ID: 23556917 [TBL] [Abstract][Full Text] [Related]
15. Which FDG/PET parameters of the primary tumors in colon or sigmoid cancer provide the best correlation with the pathological findings? Chen SW; Chen WT; Wu YC; Yen KY; Hsieh TC; Lin TY; Kao CH Eur J Radiol; 2013 Sep; 82(9):e405-10. PubMed ID: 23759516 [TBL] [Abstract][Full Text] [Related]
16. An iterative technique to segment PET lesions using a Monte Carlo based mathematical model. Nehmeh SA; El-Zeftawy H; Greco C; Schwartz J; Erdi YE; Kirov A; Schmidtlein CR; Gyau AB; Larson SM; Humm JL Med Phys; 2009 Oct; 36(10):4803-9. PubMed ID: 19928110 [TBL] [Abstract][Full Text] [Related]
17. Validation of fast-RAMLA in clinical PET. Sato H; Cho K; Fukushima Y; Shiiba M; Hakozaki K; Kiriyama T; Sakurai M; Kanaya K; Kumita S Ann Nucl Med; 2008 Dec; 22(10):869-76. PubMed ID: 19142705 [TBL] [Abstract][Full Text] [Related]
18. Partial volume correction of standardized uptake values and the dual time point in FDG-PET imaging: should these be routinely employed in assessing patients with cancer? Basu S; Alavi A Eur J Nucl Med Mol Imaging; 2007 Oct; 34(10):1527-9. PubMed ID: 17522857 [No Abstract] [Full Text] [Related]
19. Usefulness of noise adaptive non-linear gaussian filter in FDG-PET study. Nagayoshi M; Murase K; Fujino K; Uenishi Y; Kawamata M; Nakamura Y; Kitamura K; Higuchi I; Oku N; Hatazawa J Ann Nucl Med; 2005 Sep; 19(6):469-77. PubMed ID: 16248383 [TBL] [Abstract][Full Text] [Related]