BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25451015)

  • 1. Absolute quantification of Corynebacterium glutamicum glycolytic and anaplerotic enzymes by QconCAT.
    Voges R; Corsten S; Wiechert W; Noack S
    J Proteomics; 2015 Jan; 113():366-77. PubMed ID: 25451015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The linkage between nutrient supply, intracellular enzyme abundances and bacterial growth: New evidences from the central carbon metabolism of Corynebacterium glutamicum.
    Noack S; Voges R; Gätgens J; Wiechert W
    J Biotechnol; 2017 Sep; 258():13-24. PubMed ID: 28647528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of proteome dynamics in Corynebacterium glutamicum by (15)N-labeling and selected reaction monitoring.
    Voges R; Noack S
    J Proteomics; 2012 May; 75(9):2660-9. PubMed ID: 22476105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathway analysis and metabolic engineering in Corynebacterium glutamicum.
    Sahm H; Eggeling L; de Graaf AA
    Biol Chem; 2000; 381(9-10):899-910. PubMed ID: 11076021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel
    Cao Q; Han M; Zhang Z; Yu C; Xu L; Shi T; Zheng P; Sun J
    Anal Chem; 2023 Mar; 95(11):4829-4833. PubMed ID: 36897266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome.
    Krömer JO; Sorgenfrei O; Klopprogge K; Heinzle E; Wittmann C
    J Bacteriol; 2004 Mar; 186(6):1769-84. PubMed ID: 14996808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics of FACS-sorted heterogeneous Corynebacterium glutamicum populations.
    Harst A; Albaum SP; Bojarzyn T; Trötschel C; Poetsch A
    J Proteomics; 2017 May; 160():1-7. PubMed ID: 28323243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions.
    Yamamoto S; Gunji W; Suzuki H; Toda H; Suda M; Jojima T; Inui M; Yukawa H
    Appl Environ Microbiol; 2012 Jun; 78(12):4447-57. PubMed ID: 22504802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of CO
    Krüger A; Wiechert J; Gätgens C; Polen T; Mahr R; Frunzke J
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.
    Mizuno Y; Nagano-Shoji M; Kubo S; Kawamura Y; Yoshida A; Kawasaki H; Nishiyama M; Yoshida M; Kosono S
    Microbiologyopen; 2016 Feb; 5(1):152-73. PubMed ID: 26663479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a Sec signal peptide library from Bacillus subtilis for the optimization of cutinase secretion in Corynebacterium glutamicum.
    Hemmerich J; Rohe P; Kleine B; Jurischka S; Wiechert W; Freudl R; Oldiges M
    Microb Cell Fact; 2016 Dec; 15(1):208. PubMed ID: 27927208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the crucial roles of AraC-type transcriptional regulator Cgl2680 on NADPH metabolism and L-lysine production in Corynebacterium glutamicum.
    Wang L; Yu H; Xu J; Ruan H; Zhang W
    World J Microbiol Biotechnol; 2020 May; 36(6):82. PubMed ID: 32458148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.
    Peters-Wendisch P; Stansen KC; Götker S; Wendisch VF
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2493-502. PubMed ID: 22159614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corynebacterium glutamicum as a host for synthesis and export of D-Amino Acids.
    Stäbler N; Oikawa T; Bott M; Eggeling L
    J Bacteriol; 2011 Apr; 193(7):1702-9. PubMed ID: 21257776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum.
    Blombach B; Hans S; Bathe B; Eikmanns BJ
    Appl Environ Microbiol; 2009 Jan; 75(2):419-27. PubMed ID: 19047397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Lysine 299 Residue Endows the Multisubunit Mrp1 Antiporter with Dominant Roles in Na
    Xu N; Zheng Y; Wang X; Krulwich TA; Ma Y; Liu J
    Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29523552
    [No Abstract]   [Full Text] [Related]  

  • 18. RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism.
    Auchter M; Cramer A; Hüser A; Rückert C; Emer D; Schwarz P; Arndt A; Lange C; Kalinowski J; Wendisch VF; Eikmanns BJ
    J Biotechnol; 2011 Jul; 154(2-3):126-39. PubMed ID: 20620178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNase E/G-dependent degradation of metE mRNA, encoding methionine synthase, in Corynebacterium glutamicum.
    Endo S; Maeda T; Kawame T; Iwai N; Wachi M
    J Gen Appl Microbiol; 2019 Mar; 65(1):47-52. PubMed ID: 29984738
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Ikeda M; Nagashima T; Nakamura E; Kato R; Ohshita M; Hayashi M; Takeno S
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28754705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.