BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25451105)

  • 21. Heat exposure enhances radiosensitivity by depressing DNA-PK kinase activity during double strand break repair.
    Ihara M; Takeshita S; Okaichi K; Okumura Y; Ohnishi T
    Int J Hyperthermia; 2014 Mar; 30(2):102-9. PubMed ID: 24571173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding DNA damage response and DNA repair pathways: applications to more targeted cancer therapeutics.
    Kinsella TJ
    Semin Oncol; 2009 Apr; 36(2 Suppl 1):S42-51. PubMed ID: 19393835
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The BRCA2 gene is a potential molecular target during 5-fluorouracil therapy in human oral cancer cells.
    Nakagawa Y; Kajihara A; Takahashi A; Kondo N; Mori E; Kirita T; Ohnishi T
    Oncol Rep; 2014 May; 31(5):2001-6. PubMed ID: 24627042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting homologous recombination repair defects in cancer.
    Evers B; Helleday T; Jonkers J
    Trends Pharmacol Sci; 2010 Aug; 31(8):372-80. PubMed ID: 20598756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Akt promotes post-irradiation survival of human tumor cells through initiation, progression, and termination of DNA-PKcs-dependent DNA double-strand break repair.
    Toulany M; Lee KJ; Fattah KR; Lin YF; Fehrenbacher B; Schaller M; Chen BP; Chen DJ; Rodemann HP
    Mol Cancer Res; 2012 Jul; 10(7):945-57. PubMed ID: 22596249
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular inhibitors of DNA repair: searching for the ultimate tumor killing weapon.
    Nikitaki Z; Michalopoulos I; Georgakilas AG
    Future Med Chem; 2015 Aug; 7(12):1543-58. PubMed ID: 26306465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting homologous recombination-mediated DNA repair in cancer.
    Carvalho JF; Kanaar R
    Expert Opin Ther Targets; 2014 Apr; 18(4):427-58. PubMed ID: 24491188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Therapeutic targeting of a robust non-oncogene addiction to PRKDC in ATM-defective tumors.
    Riabinska A; Daheim M; Herter-Sprie GS; Winkler J; Fritz C; Hallek M; Thomas RK; Kreuzer KA; Frenzel LP; Monfared P; Martins-Boucas J; Chen S; Reinhardt HC
    Sci Transl Med; 2013 Jun; 5(189):189ra78. PubMed ID: 23761041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA damaging agents and DNA repair: From carcinogenesis to cancer therapy.
    de Almeida LC; Calil FA; Machado-Neto JA; Costa-Lotufo LV
    Cancer Genet; 2021 Apr; 252-253():6-24. PubMed ID: 33340831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidatively induced DNA damage and its repair in cancer.
    Dizdaroglu M
    Mutat Res Rev Mutat Res; 2015; 763():212-45. PubMed ID: 25795122
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting abnormal DNA double strand break repair in cancer.
    Rassool FV; Tomkinson AE
    Cell Mol Life Sci; 2010 Nov; 67(21):3699-710. PubMed ID: 20697770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA damage repair and response proteins as targets for cancer therapy.
    Lieberman HB
    Curr Med Chem; 2008; 15(4):360-7. PubMed ID: 18288990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeting the DNA Damage Response in Cancer.
    O'Connor MJ
    Mol Cell; 2015 Nov; 60(4):547-60. PubMed ID: 26590714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cancer TARGETases: DSB repair as a pharmacological target.
    Samadder P; Aithal R; Belan O; Krejci L
    Pharmacol Ther; 2016 May; 161():111-131. PubMed ID: 26899499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preventing Damage Limitation: Targeting DNA-PKcs and DNA Double-Strand Break Repair Pathways for Ovarian Cancer Therapy.
    Dungl DA; Maginn EN; Stronach EA
    Front Oncol; 2015; 5():240. PubMed ID: 26579492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Histone deacetylase inhibitors as radiosensitisers: effects on DNA damage signalling and repair.
    Groselj B; Sharma NL; Hamdy FC; Kerr M; Kiltie AE
    Br J Cancer; 2013 Mar; 108(4):748-54. PubMed ID: 23361058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanotechnology in cancer therapy: targeting the inhibition of key DNA repair pathways.
    Aziz K; Nowsheen S; Georgakilas AG
    Curr Mol Med; 2010 Oct; 10(7):626-39. PubMed ID: 20712589
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA double-strand break repair in cancer: A path to achieving precision medicine.
    Gillyard T; Davis J
    Int Rev Cell Mol Biol; 2021; 364():111-137. PubMed ID: 34507781
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA repair targeted therapy: The past or future of cancer treatment?
    Gavande NS; VanderVere-Carozza PS; Hinshaw HD; Jalal SI; Sears CR; Pawelczak KS; Turchi JJ
    Pharmacol Ther; 2016 Apr; 160():65-83. PubMed ID: 26896565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting BER enzymes in cancer therapy.
    Visnes T; Grube M; Hanna BMF; Benitez-Buelga C; Cázares-Körner A; Helleday T
    DNA Repair (Amst); 2018 Nov; 71():118-126. PubMed ID: 30228084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.