BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 25451131)

  • 1. Leveraging biomedical informatics for assessing plasticity and repair in primate spinal cord injury.
    Nielson JL; Haefeli J; Salegio EA; Liu AW; Guandique CF; Stück ED; Hawbecker S; Moseanko R; Strand SC; Zdunowski S; Brock JH; Roy RR; Rosenzweig ES; Nout-Lomas YS; Courtine G; Havton LA; Steward O; Reggie Edgerton V; Tuszynski MH; Beattie MS; Bresnahan JC; Ferguson AR
    Brain Res; 2015 Sep; 1619():124-38. PubMed ID: 25451131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord repair: advances in biology and technology.
    Courtine G; Sofroniew MV
    Nat Med; 2019 Jun; 25(6):898-908. PubMed ID: 31160817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging repair, regeneration, and translational research advances for spinal cord injury.
    Kwon BK; Sekhon LH; Fehlings MG
    Spine (Phila Pa 1976); 2010 Oct; 35(21 Suppl):S263-70. PubMed ID: 20881470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise after spinal cord injury as an agent for neuroprotection, regeneration and rehabilitation.
    Sandrow-Feinberg HR; Houlé JD
    Brain Res; 2015 Sep; 1619():12-21. PubMed ID: 25866284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.
    Povysheva T; Shmarov M; Logunov D; Naroditsky B; Shulman I; Ogurcov S; Kolesnikov P; Islamov R; Chelyshev Y
    J Neurosurg Spine; 2017 Jul; 27(1):105-115. PubMed ID: 28452633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury.
    Bregman BS; Diener PS; McAtee M; Dai HN; James C
    Adv Neurol; 1997; 72():257-75. PubMed ID: 8993704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute intermittent hypoxia and rehabilitative training following cervical spinal injury alters neuronal hypoxia- and plasticity-associated protein expression.
    Hassan A; Arnold BM; Caine S; Toosi BM; Verge VMK; Muir GD
    PLoS One; 2018; 13(5):e0197486. PubMed ID: 29775479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. G. Heiner Sell memorial lecture: neuronal plasticity after spinal cord injury: significance for present and future treatments.
    Dietz V
    J Spinal Cord Med; 2006; 29(5):481-8. PubMed ID: 17274486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoring function after spinal cord injury: towards clinical translation of experimental strategies.
    Ramer LM; Ramer MS; Bradbury EJ
    Lancet Neurol; 2014 Dec; 13(12):1241-56. PubMed ID: 25453463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies to restore motor functions after spinal cord injury.
    Boulenguez P; Vinay L
    Curr Opin Neurobiol; 2009 Dec; 19(6):587-600. PubMed ID: 19896827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord injury: overview of experimental approaches used to restore locomotor activity.
    Fakhoury M
    Rev Neurosci; 2015; 26(4):397-405. PubMed ID: 25870961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The translational dialogue in spinal cord injury research.
    Curt A
    Spinal Cord; 2012 May; 50(5):352-7. PubMed ID: 22064661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury.
    Weishaupt N; Hurd C; Wei DZ; Fouad K
    Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatments to restore respiratory function after spinal cord injury and their implications for regeneration, plasticity and adaptation.
    Sharma H; Alilain WJ; Sadhu A; Silver J
    Exp Neurol; 2012 May; 235(1):18-25. PubMed ID: 22200541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation.
    Lukovic D; Moreno-Manzano V; Lopez-Mocholi E; Rodriguez-Jiménez FJ; Jendelova P; Sykova E; Oria M; Stojkovic M; Erceg S
    Sci Rep; 2015 Apr; 5():9640. PubMed ID: 25860664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Social and environmental enrichment improves sensory and motor recovery after severe contusive spinal cord injury in the rat.
    Berrocal Y; Pearse DD; Singh A; Andrade CM; McBroom JS; Puentes R; Eaton MJ
    J Neurotrauma; 2007 Nov; 24(11):1761-72. PubMed ID: 18001204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Descending motor pathways and cortical physiology after spinal cord injury assessed by transcranial magnetic stimulation: a systematic review.
    Nardone R; Höller Y; Brigo F; Orioli A; Tezzon F; Schwenker K; Christova M; Golaszewski S; Trinka E
    Brain Res; 2015 Sep; 1619():139-54. PubMed ID: 25251591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opinions on the preclinical evaluation of novel therapies for spinal cord injury: a comparison between researchers and spinal cord-injured individuals.
    Kwon BK; Ghag A; Reichl L; Dvorak MF; Illes J; Tetzlaff W
    J Neurotrauma; 2012 Sep; 29(14):2367-74. PubMed ID: 22776047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Evaluation of neurological function following establishment of spinal cord hemisection model in rhesus].
    Ni W; Li YM; Guan YG; Zhu XB; Wang TH; Feng ZT
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2005 May; 36(3):328-30. PubMed ID: 15931859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.
    Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E
    J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.