BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 25451136)

  • 1. Formulation and stabilization of recombinant protein based virus-like particle vaccines.
    Jain NK; Sahni N; Kumru OS; Joshi SB; Volkin DB; Russell Middaugh C
    Adv Drug Deliv Rev; 2015 Oct; 93():42-55. PubMed ID: 25451136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antigen delivery by virus-like particles for immunotherapeutic vaccination.
    Al-Barwani F; Donaldson B; Pelham SJ; Young SL; Ward VK
    Ther Deliv; 2014 Nov; 5(11):1223-40. PubMed ID: 25491672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Characterization and Formulation Development of a Trivalent Equine Encephalitis Virus-Like Particle Vaccine Candidate.
    Toprani VM; Cheng Y; Wahome N; Khasa H; Kueltzo LA; Schwartz RM; Middaugh CR; Joshi SB; Volkin DB
    J Pharm Sci; 2018 Oct; 107(10):2544-2558. PubMed ID: 29883665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toolbox for non-intrusive structural and functional analysis of recombinant VLP based vaccines: a case study with hepatitis B vaccine.
    Mulder AM; Carragher B; Towne V; Meng Y; Wang Y; Dieter L; Potter CS; Washabaugh MW; Sitrin RD; Zhao Q
    PLoS One; 2012; 7(4):e33235. PubMed ID: 22493667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formulation Studies During Preclinical Development of Influenza Hemagglutinin and Virus-Like Particle Vaccine Candidates.
    Wahome N; Hickey JM; Volkin DB; Middaugh CR
    Methods Mol Biol; 2016; 1404():393-421. PubMed ID: 27076313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies.
    Kumru OS; Joshi SB; Smith DE; Middaugh CR; Prusik T; Volkin DB
    Biologicals; 2014 Sep; 42(5):237-59. PubMed ID: 24996452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges and opportunities of using liquid chromatography and mass spectrometry methods to develop complex vaccine antigens as pharmaceutical dosage forms.
    Hickey JM; Sahni N; Toth RT; Kumru OS; Joshi SB; Middaugh CR; Volkin DB
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Oct; 1032():23-38. PubMed ID: 27071526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing sequence plasticity of a virus-like nanoparticle by evolution toward a versatile scaffold for vaccines and drug delivery.
    Lu Y; Chan W; Ko BY; VanLang CC; Swartz JR
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12360-5. PubMed ID: 26392546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adjuvant formulations for virus-like particle (VLP) based vaccines.
    Cimica V; Galarza JM
    Clin Immunol; 2017 Oct; 183():99-108. PubMed ID: 28780375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccination.
    Mohsen MO; Gomes AC; Cabral-Miranda G; Krueger CC; Leoratti FM; Stein JV; Bachmann MF
    J Control Release; 2017 Apr; 251():92-100. PubMed ID: 28257987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of varying antigens and adjuvant systems on the immunogenicity and safety of investigational tetravalent human oncogenic papillomavirus vaccines: results from two randomized trials.
    Van Damme P; Leroux-Roels G; Simon P; Foidart JM; Donders G; Hoppenbrouwers K; Levin M; Tibaldi F; Poncelet S; Moris P; Dessy F; Giannini SL; Descamps D; Dubin G
    Vaccine; 2014 Jun; 32(29):3694-705. PubMed ID: 24674663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 5th virus-like particle and nano-particle vaccines (VLPNPV) conference.
    Engeroff P; Bachmann MF
    Expert Rev Vaccines; 2019 Jan; 18(1):1-3. PubMed ID: 30526126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetravalent recombinant dengue virus-like particles as potential vaccine candidates: immunological properties.
    Liu Y; Zhou J; Yu Z; Fang D; Fu C; Zhu X; He Z; Yan H; Jiang L
    BMC Microbiol; 2014 Dec; 14():233. PubMed ID: 25520151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liposomal adjuvants: preparation and formulation with antigens.
    Haensler J
    Methods Mol Biol; 2010; 626():73-90. PubMed ID: 20099122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virus-like particle vaccines: immunology and formulation for clinical translation.
    Donaldson B; Lateef Z; Walker GF; Young SL; Ward VK
    Expert Rev Vaccines; 2018 Sep; 17(9):833-849. PubMed ID: 30173619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens.
    Perrie Y; Mohammed AR; Kirby DJ; McNeil SE; Bramwell VW
    Int J Pharm; 2008 Dec; 364(2):272-80. PubMed ID: 18555624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vaccine technologies: From whole organisms to rationally designed protein assemblies.
    Karch CP; Burkhard P
    Biochem Pharmacol; 2016 Nov; 120():1-14. PubMed ID: 27157411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pre-existing anti-carrier immunity and antigenic element multiplicity on efficacy of a modular virus-like particle vaccine.
    Chuan YP; Rivera-Hernandez T; Wibowo N; Connors NK; Wu Y; Hughes FK; Lua LH; Middelberg AP
    Biotechnol Bioeng; 2013 Sep; 110(9):2343-51. PubMed ID: 23532896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enveloped virus-like particle platforms: vaccines of the future?
    Pitoiset F; Vazquez T; Bellier B
    Expert Rev Vaccines; 2015 Jul; 14(7):913-5. PubMed ID: 25968245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virus-like particle formulation optimization by miniaturized high-throughput screening.
    Mohr J; Chuan YP; Wu Y; Lua LH; Middelberg AP
    Methods; 2013 May; 60(3):248-56. PubMed ID: 23639868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.