These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 25451142)
1. The structure, stability, and electronic properties of ultra-thin BC2N nanotubes: a first-principles study. Wang Y; Zhang J; Huang G; Yao X; Shao Q J Mol Model; 2014 Dec; 20(12):2536. PubMed ID: 25451142 [TBL] [Abstract][Full Text] [Related]
2. The influence of the stacking orientation of C and BN stripes in the structure, energetics, and electronic properties of BC2N nanotubes. Machado M; Kar T; Piquini P Nanotechnology; 2011 May; 22(20):205706. PubMed ID: 21444960 [TBL] [Abstract][Full Text] [Related]
3. Studies on the encapsulation of F- in single walled nanotubes of different chiralities using density functional theory calculations and Car-Parrinello molecular dynamics simulations. Ravinder P; Kumar RM; Subramanian V J Phys Chem A; 2012 Jun; 116(23):5519-28. PubMed ID: 22582972 [TBL] [Abstract][Full Text] [Related]
4. Theoretical Encapsulation of Fluorouracil (5-FU) Anti-Cancer Chemotherapy Drug into Carbon Nanotubes (CNT) and Boron Nitride Nanotubes (BNNT). Zarghami Dehaghani M; Yousefi F; Sajadi SM; Tajammal Munir M; Abida O; Habibzadeh S; Mashhadzadeh AH; Rabiee N; Mostafavi E; Saeb MR Molecules; 2021 Aug; 26(16):. PubMed ID: 34443508 [TBL] [Abstract][Full Text] [Related]
5. Investigation of nanotubes as the smart carriers for targeted delivery of mercaptopurine anticancer drug. Zaboli M; Raissi H; Zaboli M J Biomol Struct Dyn; 2022 Jul; 40(10):4579-4592. PubMed ID: 33336622 [TBL] [Abstract][Full Text] [Related]
6. Carbon and boron nanotubes as a template material for adsorption of 6-Thioguanine chemotherapeutic: a molecular dynamics and density functional approach. Hasanzade Z; Raissi H J Biomol Struct Dyn; 2020 Feb; 38(3):697-707. PubMed ID: 30900530 [TBL] [Abstract][Full Text] [Related]
7. Tunable electronic properties of ultra-thin boron-carbon-nitrogen heteronanotubes for various compositions. Wang Y; Huang G; Zhang J; Shao Q J Mol Model; 2014 Aug; 20(8):2371. PubMed ID: 25031080 [TBL] [Abstract][Full Text] [Related]
8. First-Principles Study of Water Nanotubes Captured Inside Carbon/Boron Nitride Nanotubes. Shayeganfar F; Beheshtian J; Shahsavari R Langmuir; 2018 Sep; 34(37):11176-11187. PubMed ID: 30139254 [TBL] [Abstract][Full Text] [Related]
9. Comparative prediction of binding affinity of Hydroxyurea anti-cancer to boron nitride and carbon nanotubes as smart targeted drug delivery vehicles. Mortazavifar A; Raissi H; Shahabi M J Biomol Struct Dyn; 2019 Nov; 37(18):4852-4862. PubMed ID: 30721644 [TBL] [Abstract][Full Text] [Related]
10. Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials. Mukhopadhyay S; Gowtham S; Scheicher RH; Pandey R; Karna SP Nanotechnology; 2010 Apr; 21(16):165703. PubMed ID: 20351402 [TBL] [Abstract][Full Text] [Related]
11. Adsorption properties of nitrogen dioxide on hybrid carbon and boron-nitride nanotubes. Liu H; Turner CH Phys Chem Chem Phys; 2014 Nov; 16(41):22853-60. PubMed ID: 25242148 [TBL] [Abstract][Full Text] [Related]
12. First-principles simulations of the chemical functionalization of (5,5) boron nitride nanotubes. Chigo Anota E; Cocoletzi GH J Mol Model; 2013 Jun; 19(6):2335-41. PubMed ID: 23397070 [TBL] [Abstract][Full Text] [Related]
13. Boron nitride nanotubes: synthesis and applications. Kim JH; Pham TV; Hwang JH; Kim CS; Kim MJ Nano Converg; 2018; 5(1):17. PubMed ID: 30046512 [TBL] [Abstract][Full Text] [Related]
14. Comparative study of the efficiency of silicon carbide, boron nitride and carbon nanotube to deliver cancerous drug, azacitidine: A DFT study. Baildya N; Mazumdar S; Mridha NK; Chattopadhyay AP; Khan AA; Dutta T; Mandal M; Chowdhury SK; Reza R; Ghosh NN Comput Biol Med; 2023 Mar; 154():106593. PubMed ID: 36746115 [TBL] [Abstract][Full Text] [Related]
15. Can trans-polyacetylene be formed on single-walled carbon-doped boron nitride nanotubes? Chen Y; Wang HX; Zhao JX; Cai QH; Wang XG; Wang XZ J Mol Model; 2012 Jul; 18(7):3415-25. PubMed ID: 22271098 [TBL] [Abstract][Full Text] [Related]
16. Density functional theory investigation to surface modification of boron nitride nanotubes. Rajhi AA; Alamri S J Mol Model; 2022 Jan; 28(2):50. PubMed ID: 35102455 [TBL] [Abstract][Full Text] [Related]
17. Electron emission originated from free-electron-like states of alkali-doped boron-nitride nanotubes. Yan B; Park C; Ihm J; Zhou G; Duan W; Park N J Am Chem Soc; 2008 Dec; 130(50):17012-5. PubMed ID: 19012383 [TBL] [Abstract][Full Text] [Related]
18. Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties. Jing L; Tay RY; Li H; Tsang SH; Huang J; Tan D; Zhang B; Teo EH; Tok AI Nanoscale; 2016 Jun; 8(21):11114-22. PubMed ID: 27227818 [TBL] [Abstract][Full Text] [Related]
19. Defect-Induced Transport Enhancement in Carbon-Boron Nitride-Carbon Heteronanotube Junctions. Algharagholy LA; García-Suárez VM J Phys Chem Lett; 2023 Mar; 14(8):2056-2064. PubMed ID: 36795974 [TBL] [Abstract][Full Text] [Related]
20. Boron nitride nanotubes and nanosheets. Golberg D; Bando Y; Huang Y; Terao T; Mitome M; Tang C; Zhi C ACS Nano; 2010 Jun; 4(6):2979-93. PubMed ID: 20462272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]