These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2545129)

  • 1. Structure, function, and regulation of the skeletal muscle dihydropyridine receptor.
    Beam KG; Tanabe T; Numa S
    Ann N Y Acad Sci; 1989; 560():127-37. PubMed ID: 2545129
    [No Abstract]   [Full Text] [Related]  

  • 2. Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA.
    Tanabe T; Mikami A; Numa S; Beam KG
    Nature; 1990 Mar; 344(6265):451-3. PubMed ID: 2157159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs.
    Adams BA; Tanabe T; Mikami A; Numa S; Beam KG
    Nature; 1990 Aug; 346(6284):569-72. PubMed ID: 2165571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel.
    Mikami A; Imoto K; Tanabe T; Niidome T; Mori Y; Takeshima H; Narumiya S; Numa S
    Nature; 1989 Jul; 340(6230):230-3. PubMed ID: 2474130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Structure and function of the receptor for calcium channel blockers from skeletal muscle].
    Tanabe T
    Seikagaku; 1990 Aug; 62(8):1003-19. PubMed ID: 1700804
    [No Abstract]   [Full Text] [Related]  

  • 6. Insights into possible skeletal muscle nicotinic acetylcholine receptor (AChR) changes in some congenital myasthenias from physiological studies, point mutations, and subunit substitutions of the AChR.
    Kaminski HJ; Ruff RL
    Ann N Y Acad Sci; 1993 Jun; 681():435-50. PubMed ID: 7689311
    [No Abstract]   [Full Text] [Related]  

  • 7. Induction of calcium currents by the expression of the alpha 1-subunit of the dihydropyridine receptor from skeletal muscle.
    Perez-Reyes E; Kim HS; Lacerda AE; Horne W; Wei XY; Rampe D; Campbell KP; Brown AM; Birnbaumer L
    Nature; 1989 Jul; 340(6230):233-6. PubMed ID: 2474131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary structure of the receptor for calcium channel blockers from skeletal muscle.
    Tanabe T; Takeshima H; Mikami A; Flockerzi V; Takahashi H; Kangawa K; Kojima M; Matsuo H; Hirose T; Numa S
    Nature; 1987 Jul 23-29; 328(6128):313-8. PubMed ID: 3037387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscular dysgenesis in mice: a model system for studying excitation-contraction coupling.
    Adams BA; Beam KG
    FASEB J; 1990 Jul; 4(10):2809-16. PubMed ID: 2165014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bay K8644 like activity of an antibody against a 60 kDa tubular membrane protein.
    Chatterjee D; Lahiri P; Chatterjee A; Chakraborty M
    Biochim Biophys Acta; 1989 Aug; 984(1):104-8. PubMed ID: 2475176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscular dysgenesis the role of calcium channels in muscle development.
    Chaudhari N
    Soc Gen Physiol Ser; 1995; 50():115-23. PubMed ID: 7676317
    [No Abstract]   [Full Text] [Related]  

  • 12. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling.
    Tanabe T; Beam KG; Adams BA; Niidome T; Numa S
    Nature; 1990 Aug; 346(6284):567-9. PubMed ID: 2165570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular insights into excitation-contraction coupling.
    Numa S; Tanabe T; Takeshima H; Mikami A; Niidome T; Nishimura S; Adams BA; Beam KG
    Cold Spring Harb Symp Quant Biol; 1990; 55():1-7. PubMed ID: 1966760
    [No Abstract]   [Full Text] [Related]  

  • 14. Opening of dihydropyridine calcium channels in skeletal muscle membranes by inositol trisphosphate.
    Vilven J; Coronado R
    Nature; 1988 Dec; 336(6199):587-9. PubMed ID: 2462164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normalization of current kinetics by interaction between the alpha 1 and beta subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel.
    Lacerda AE; Kim HS; Ruth P; Perez-Reyes E; Flockerzi V; Hofmann F; Birnbaumer L; Brown AM
    Nature; 1991 Aug; 352(6335):527-30. PubMed ID: 1650913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular aspects of ion permeation through channels.
    Imoto K
    Ann N Y Acad Sci; 1993 Dec; 707():38-50. PubMed ID: 9137540
    [No Abstract]   [Full Text] [Related]  

  • 17. Regulation of skeletal muscle dihydropyridine receptor gene expression by biomechanical unloading.
    Kandarian S; O'Brien S; Thomas K; Schulte L; Navarro J
    J Appl Physiol (1985); 1992 Jun; 72(6):2510-4. PubMed ID: 1321113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic and functional reversion of muscular dysgenesis by heterotypic fibroblast-myotube fusion in vitro.
    Garcia L; Dreyfus P; Pinçon-Raymond M; Villageois A; Chassande O; Romey G; Lazdunski M; Rieger F
    Adv Exp Med Biol; 1990; 280():139-46. PubMed ID: 2174201
    [No Abstract]   [Full Text] [Related]  

  • 19. Molecular properties of dihydropyridine-sensitive calcium channels.
    Seagar MJ; Takahashi M; Catterall WA
    Ann N Y Acad Sci; 1988; 522():162-75. PubMed ID: 2454051
    [No Abstract]   [Full Text] [Related]  

  • 20. Expression of voltage-dependent Ca channels from skeletal muscle in Xenopus oocytes.
    Lotan I; Gigi A; Dascal N
    Ann N Y Acad Sci; 1989; 560():183-4. PubMed ID: 2472765
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.