These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25451517)

  • 1. Comparison between mathematical models of intermittent androgen suppression for prostate cancer.
    Hatano T; Hirata Y; Suzuki H; Aihara K
    J Theor Biol; 2015 Feb; 366():33-45. PubMed ID: 25451517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model predictive control for optimally scheduling intermittent androgen suppression of prostate cancer.
    Hirata Y; Azuma S; Aihara K
    Methods; 2014 Jun; 67(3):278-81. PubMed ID: 24680737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ability of intermittent androgen suppression to selectively create a non-trivial periodic orbit for a type of prostate cancer patients.
    Hirata Y; Aihara K
    J Theor Biol; 2015 Nov; 384():147-52. PubMed ID: 26319993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nonlinear model with competition between prostate tumor cells and its application to intermittent androgen suppression therapy of prostate cancer.
    Shimada T; Aihara K
    Math Biosci; 2008; 214(1-2):134-9. PubMed ID: 18420226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new protocol for intermittent androgen suppression therapy of prostate cancer with unstable saddle-point dynamics.
    Suzuki Y; Sakai D; Nomura T; Hirata Y; Aihara K
    J Theor Biol; 2014 Jun; 350():1-16. PubMed ID: 24524858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modelling of prostate cancer growth and its application to hormone therapy.
    Tanaka G; Hirata Y; Goldenberg SL; Bruchovsky N; Aihara K
    Philos Trans A Math Phys Eng Sci; 2010 Nov; 368(1930):5029-44. PubMed ID: 20921010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nonlinear competitive model of the prostate tumor growth under intermittent androgen suppression.
    Yang J; Zhao TJ; Yuan CQ; Xie JH; Hao FF
    J Theor Biol; 2016 Sep; 404():66-72. PubMed ID: 27259386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermittent complete androgen blockade in metastatic prostate cancer.
    Rambeaud JJ
    Eur Urol; 1999; 35 Suppl 1():32-6. PubMed ID: 10081701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modeling of continuous and intermittent androgen suppression for the treatment of advanced prostate cancer.
    Voth AM; Alford JG; Swim EW
    Math Biosci Eng; 2017 Jun; 14(3):777-804. PubMed ID: 28092963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear system identification for prostate cancer and optimality of intermittent androgen suppression therapy.
    Suzuki T; Aihara K
    Math Biosci; 2013 Sep; 245(1):40-8. PubMed ID: 23648278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermittent Androgen Suppression: Estimating Parameters for Individual Patients Based on Initial PSA Data in Response to Androgen Deprivation Therapy.
    Hirata Y; Morino K; Akakura K; Higano CS; Bruchovsky N; Gambol T; Hall S; Tanaka G; Aihara K
    PLoS One; 2015; 10(6):e0130372. PubMed ID: 26107379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematically modelling and controlling prostate cancer under intermittent hormone therapy.
    Hirata Y; Tanaka G; Bruchovsky N; Aihara K
    Asian J Androl; 2012 Mar; 14(2):270-7. PubMed ID: 22231293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of combined androgen blockade on cognitive function during the first cycle of intermittent androgen suppression in patients with prostate cancer.
    Cherrier MM; Rose AL; Higano C
    J Urol; 2003 Nov; 170(5):1808-11. PubMed ID: 14532781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piecewise affine systems modelling for optimizing hormone therapy of prostate cancer.
    Suzuki T; Bruchovsky N; Aihara K
    Philos Trans A Math Phys Eng Sci; 2010 Nov; 368(1930):5045-59. PubMed ID: 20921011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization Therapy by Coupling Intermittent Androgen Suppression with Impulsive Chemotherapy for a Prostate Cancer Model.
    Pei Y; Lv Y; Li C; Fang D
    Bull Math Biol; 2023 Nov; 85(12):123. PubMed ID: 37935812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Practically scheduling hormone therapy for prostate cancer using a mathematical model.
    Nakanishi A; Hirata Y
    J Theor Biol; 2019 Oct; 478():48-57. PubMed ID: 31202792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finnish multicenter study comparing intermittent to continuous androgen deprivation for advanced prostate cancer: interim analysis of prognostic markers affecting initial response to androgen deprivation.
    Salonen AJ; Viitanen J; Lundstedt S; Ala-Opas M; Taari K; Tammela TL;
    J Urol; 2008 Sep; 180(3):915-9; discussion 919-20. PubMed ID: 18635219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer.
    Hirata Y; Bruchovsky N; Aihara K
    J Theor Biol; 2010 May; 264(2):517-27. PubMed ID: 20176032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of intermittent androgen suppression in biochemically recurrent or newly diagnosed metastatic prostate cancer.
    Crook J
    Curr Opin Support Palliat Care; 2013 Sep; 7(3):258-64. PubMed ID: 23912384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The FinnProstate Study VII: intermittent versus continuous androgen deprivation in patients with advanced prostate cancer.
    Salonen AJ; Taari K; Ala-Opas M; Viitanen J; Lundstedt S; Tammela TL;
    J Urol; 2012 Jun; 187(6):2074-81. PubMed ID: 22498230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.