BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 25451533)

  • 1. Dynamic optimization of metabolic networks coupled with gene expression.
    Waldherr S; Oyarzún DA; Bockmayr A
    J Theor Biol; 2015 Jan; 365():469-85. PubMed ID: 25451533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A reliable simulator for dynamic flux balance analysis.
    Höffner K; Harwood SM; Barton PI
    Biotechnol Bioeng; 2013 Mar; 110(3):792-802. PubMed ID: 23055276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-scale metabolic flux analysis of Streptomyces lividans growing on a complex medium.
    D'Huys PJ; Lule I; Vercammen D; Anné J; Van Impe JF; Bernaerts K
    J Biotechnol; 2012 Sep; 161(1):1-13. PubMed ID: 22641041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae.
    Hjersted JL; Henson MA
    IET Syst Biol; 2009 May; 3(3):167-79. PubMed ID: 19449977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory dynamic enzyme-cost flux balance analysis: A unifying framework for constraint-based modeling.
    Liu L; Bockmayr A
    J Theor Biol; 2020 Sep; 501():110317. PubMed ID: 32446743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The metabolic flux phenotype of heterotrophic Arabidopsis cells reveals a complex response to changes in nitrogen supply.
    Masakapalli SK; Kruger NJ; Ratcliffe RG
    Plant J; 2013 May; 74(4):569-82. PubMed ID: 23406511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of metabolic coupling for the dynamics of gene expression following a diauxic shift in Escherichia coli.
    Baldazzi V; Ropers D; Geiselmann J; Kahn D; de Jong H
    J Theor Biol; 2012 Feb; 295():100-15. PubMed ID: 22138386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the local optimal solutions of metabolic regulatory networks using information guided genetic algorithm approach and clustering analysis.
    Zheng Y; Yeh CW; Yang CD; Jang SS; Chu IM
    J Biotechnol; 2007 Aug; 131(2):159-67. PubMed ID: 17669537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization-driven identification of genetic perturbations accelerates the convergence of model parameters in ensemble modeling of metabolic networks.
    Zomorrodi AR; Lafontaine Rivera JG; Liao JC; Maranas CD
    Biotechnol J; 2013 Sep; 8(9):1090-104. PubMed ID: 23450699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic flux balance analysis with nonlinear objective function.
    Zhao X; Noack S; Wiechert W; Lieres EV
    J Math Biol; 2017 Dec; 75(6-7):1487-1515. PubMed ID: 28401266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling microbial metabolic rewiring during growth in a complex medium.
    Fondi M; Bosi E; Presta L; Natoli D; Fani R
    BMC Genomics; 2016 Nov; 17(1):970. PubMed ID: 27881075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of bioprocess productivity based on metabolic-genetic network models with bilevel dynamic programming.
    Jabarivelisdeh B; Waldherr S
    Biotechnol Bioeng; 2018 Jul; 115(7):1829-1841. PubMed ID: 29578608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic states with maximal specific rate carry flux through an elementary flux mode.
    Wortel MT; Peters H; Hulshof J; Teusink B; Bruggeman FJ
    FEBS J; 2014 Mar; 281(6):1547-55. PubMed ID: 24460934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae.
    Thierie J
    J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal flux patterns in cellular metabolic networks.
    Almaas E
    Chaos; 2007 Jun; 17(2):026107. PubMed ID: 17614694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic metabolic flux analysis--tools for probing transient states of metabolic networks.
    Antoniewicz MR
    Curr Opin Biotechnol; 2013 Dec; 24(6):973-8. PubMed ID: 23611566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic estimation of specific fluxes in metabolic networks using non-linear dynamic optimization.
    Vercammen D; Logist F; Impe JV
    BMC Syst Biol; 2014 Dec; 8():132. PubMed ID: 25466625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.