BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 25451533)

  • 21. Uncovering metabolic objectives pursued by changes of enzyme levels.
    Hoffmann S; Holzhütter HG
    Ann N Y Acad Sci; 2009 Mar; 1158():57-70. PubMed ID: 19348632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Utilizing elementary mode analysis, pathway thermodynamics, and a genetic algorithm for metabolic flux determination and optimal metabolic network design.
    Boghigian BA; Shi H; Lee K; Pfeifer BA
    BMC Syst Biol; 2010 Apr; 4():49. PubMed ID: 20416071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An in silico compartmentalized metabolic model of Brassica napus enables the systemic study of regulatory aspects of plant central metabolism.
    Pilalis E; Chatziioannou A; Thomasset B; Kolisis F
    Biotechnol Bioeng; 2011 Jul; 108(7):1673-82. PubMed ID: 21337341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Environmental versatility promotes modularity in genome-scale metabolic networks.
    Samal A; Wagner A; Martin OC
    BMC Syst Biol; 2011 Aug; 5():135. PubMed ID: 21864340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures.
    Hanly TJ; Henson MA
    Biotechnol Bioeng; 2011 Feb; 108(2):376-85. PubMed ID: 20882517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of steady-state ¹³C-labeling experiments for metabolic flux analysis.
    Kruger NJ; Masakapalli SK; Ratcliffe RG
    Methods Mol Biol; 2014; 1090():53-72. PubMed ID: 24222409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pathways and fluxes: exploring the plant metabolic network.
    Kruger NJ; Ratcliffe RG
    J Exp Bot; 2012 Mar; 63(6):2243-6. PubMed ID: 22407647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into plant metabolic networks from steady-state metabolic flux analysis.
    Kruger NJ; Ratcliffe RG
    Biochimie; 2009 Jun; 91(6):697-702. PubMed ID: 19455743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle.
    Song HS; Reifman J; Wallqvist A
    PLoS One; 2014; 9(11):e112524. PubMed ID: 25397773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resource allocation in metabolic networks: kinetic optimization and approximations by FBA.
    Müller S; Regensburger G; Steuer R
    Biochem Soc Trans; 2015 Dec; 43(6):1195-200. PubMed ID: 26614660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequential activation of metabolic pathways: a dynamic optimization approach.
    Oyarzún DA; Ingalls BP; Middleton RH; Kalamatianos D
    Bull Math Biol; 2009 Nov; 71(8):1851-72. PubMed ID: 19412635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A genome-scale dynamic constraint-based modelling (gDCBM) framework predicts growth dynamics, medium composition and intracellular flux distributions in CHO clonal variations.
    Yasemi M; Jolicoeur M
    Metab Eng; 2023 Jul; 78():209-222. PubMed ID: 37348809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Model selection for microbial nutrient uptake using a cost-benefit approach.
    Müller J; Hense BA; Marozava S; Kuttler Ch; Meckenstock RU
    Math Biosci; 2014 Sep; 255():52-70. PubMed ID: 24977929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic flux cartography of hairy roots primary metabolism.
    Cloutier M; Perrier M; Jolicoeur M
    Phytochemistry; 2007; 68(16-18):2393-404. PubMed ID: 17555780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic flux ratio analysis and multi-objective optimization revealed a globally conserved and coordinated metabolic response of E. coli to paraquat-induced oxidative stress.
    Shen T; Rui B; Zhou H; Zhang X; Yi Y; Wen H; Zheng H; Wu J; Shi Y
    Mol Biosyst; 2013 Jan; 9(1):121-32. PubMed ID: 23128557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A newton cooperative genetic algorithm method for in silico optimization of metabolic pathway production.
    Ismail MA; Deris S; Mohamad MS; Abdullah A
    PLoS One; 2015; 10(5):e0126199. PubMed ID: 25961295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network.
    Lee J; Yun H; Feist AM; Palsson BØ; Lee SY
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):849-62. PubMed ID: 18758767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flux-based classification of reactions reveals a functional bow-tie organization of complex metabolic networks.
    Singh S; Samal A; Giri V; Krishna S; Raghuram N; Jain S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052708. PubMed ID: 23767567
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling metabolic networks of individual bacterial agents in heterogeneous and dynamic soil habitats (IndiMeSH).
    Borer B; Ataman M; Hatzimanikatis V; Or D
    PLoS Comput Biol; 2019 Jun; 15(6):e1007127. PubMed ID: 31216273
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation.
    Ciliberto A; Capuani F; Tyson JJ
    PLoS Comput Biol; 2007 Mar; 3(3):e45. PubMed ID: 17367203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.