These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 25451540)
1. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries. Zhou YN; Ma J; Hu E; Yu X; Gu L; Nam KW; Chen L; Wang Z; Yang XQ Nat Commun; 2014 Nov; 5():5381. PubMed ID: 25451540 [TBL] [Abstract][Full Text] [Related]
2. Molybdenum substitution for improving the charge compensation and activity of Li2MnO3. Ma J; Zhou YN; Gao Y; Kong Q; Wang Z; Yang XQ; Chen L Chemistry; 2014 Jul; 20(28):8723-30. PubMed ID: 24939463 [TBL] [Abstract][Full Text] [Related]
3. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries. Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529 [TBL] [Abstract][Full Text] [Related]
4. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Liu W; Oh P; Liu X; Lee MJ; Cho W; Chae S; Kim Y; Cho J Angew Chem Int Ed Engl; 2015 Apr; 54(15):4440-57. PubMed ID: 25801735 [TBL] [Abstract][Full Text] [Related]
5. Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance. Fu C; Li G; Luo D; Li Q; Fan J; Li L ACS Appl Mater Interfaces; 2014 Sep; 6(18):15822-31. PubMed ID: 25203668 [TBL] [Abstract][Full Text] [Related]
6. Dual Substitution Strategy in Co-Free Layered Cathode Materials for Superior Lithium Ion Batteries. Jia G; Li F; Wang J; Liu S; Yang Y ACS Appl Mater Interfaces; 2021 Apr; 13(16):18733-18742. PubMed ID: 33861562 [TBL] [Abstract][Full Text] [Related]
7. Recent advances in first principles computational research of cathode materials for lithium-ion batteries. Meng YS; Arroyo-de Dompablo ME Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876 [TBL] [Abstract][Full Text] [Related]
8. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288 [TBL] [Abstract][Full Text] [Related]
9. Comparison of nanorod-structured Li[Ni0.54 Co0.16 Mn0.30 ]O2 with conventional cathode materials for Li-ion batteries. Noh HJ; Ju JW; Sun YK ChemSusChem; 2014 Jan; 7(1):245-52. PubMed ID: 24127348 [TBL] [Abstract][Full Text] [Related]
11. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries. Lee KT; Jeong S; Cho J Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical Characteristics of Layered Transition Metal Oxide Cathode Materials for Lithium Ion Batteries: Surface, Bulk Behavior, and Thermal Properties. Tian C; Lin F; Doeff MM Acc Chem Res; 2018 Jan; 51(1):89-96. PubMed ID: 29257667 [TBL] [Abstract][Full Text] [Related]
13. In Situ Observation of the Effect of Accelerating Voltage on Electron Beam Damage of Layered Cathode Materials for Lithium-Ion Batteries. Shim JH; Kang H; Kim YM; Lee S ACS Appl Mater Interfaces; 2019 Nov; 11(47):44293-44299. PubMed ID: 31687809 [TBL] [Abstract][Full Text] [Related]
14. Countering the Segregation of Transition-Metal Ions in LiMn1/3 Co1/3 Ni1/3 O2 Cathode for Ultralong Life and High-Energy Li-Ion Batteries. Luo D; Fang S; Tamiya Y; Yang L; Hirano S Small; 2016 Aug; 12(32):4421-30. PubMed ID: 27389965 [TBL] [Abstract][Full Text] [Related]
15. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
16. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. Gu M; Belharouak I; Zheng J; Wu H; Xiao J; Genc A; Amine K; Thevuthasan S; Baer DR; Zhang JG; Browning ND; Liu J; Wang C ACS Nano; 2013 Jan; 7(1):760-7. PubMed ID: 23237664 [TBL] [Abstract][Full Text] [Related]
17. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li₀.₂Fe₀.₁Ni₀.₁₅Mn₀.₅₅]O₂ for lithium-ion batteries. Zhao T; Chen S; Chen R; Li L; Zhang X; Xie M; Wu F ACS Appl Mater Interfaces; 2014 Dec; 6(23):21711-20. PubMed ID: 25402183 [TBL] [Abstract][Full Text] [Related]
18. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824 [TBL] [Abstract][Full Text] [Related]
19. A Superlattice-Stabilized Layered Oxide Cathode for Sodium-Ion Batteries. Li Q; Xu S; Guo S; Jiang K; Li X; Jia M; Wang P; Zhou H Adv Mater; 2020 Jun; 32(23):e1907936. PubMed ID: 32338396 [TBL] [Abstract][Full Text] [Related]
20. Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li(1.2)Ni(0.2)Mn(0.6)O2 cathode material for lithium ion batteries. Yan P; Nie A; Zheng J; Zhou Y; Lu D; Zhang X; Xu R; Belharouak I; Zu X; Xiao J; Amine K; Liu J; Gao F; Shahbazian-Yassar R; Zhang JG; Wang CM Nano Lett; 2015 Jan; 15(1):514-22. PubMed ID: 25485638 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]