BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25451633)

  • 1. Bioconcentration of TNT and RDX in coastal marine biota.
    Ballentine M; Tobias C; Vlahos P; Smith R; Cooper C
    Arch Environ Contam Toxicol; 2015 May; 68(4):718-28. PubMed ID: 25451633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake and fate of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in coastal marine biota determined using a stable isotopic tracer, (15)N - [RDX].
    Ballentine ML; Ariyarathna T; Smith RW; Cooper C; Vlahos P; Fallis S; Groshens TJ; Tobias C
    Chemosphere; 2016 Jun; 153():28-38. PubMed ID: 27010164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal rates of dissolved munitions compounds in seawater.
    Smith RW; Vlahos P; Tobias C; Ballentine M; Ariyarathna T; Cooper C
    Chemosphere; 2013 Aug; 92(8):898-904. PubMed ID: 23623038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomonitoring of 2,4,6-trinitrotoluene and degradation products in the marine environment with transplanted blue mussels (M. edulis).
    Strehse JS; Appel D; Geist C; Martin HJ; Maser E
    Toxicology; 2017 Sep; 390():117-123. PubMed ID: 28899748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative toxicokinetics of explosive compounds in sheepshead minnows.
    Lotufo GR; Lydy MJ
    Arch Environ Contam Toxicol; 2005 Aug; 49(2):206-14. PubMed ID: 16059748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explosives compounds from sea-dumped relic munitions accumulate in marine biota.
    Beck AJ; Gledhill M; Kampmeier M; Feng C; Schlosser C; Greinert J; Achterberg EP
    Sci Total Environ; 2022 Feb; 806(Pt 4):151266. PubMed ID: 34757098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation and mineralization of isotopically labeled TNT and RDX in anaerobic marine sediments.
    Ariyarathna T; Vlahos P; Smith RW; Fallis S; Groshens T; Tobias C
    Environ Toxicol Chem; 2017 May; 36(5):1170-1180. PubMed ID: 27791286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments. Uptake and fate of TNT and RDX in plants.
    Best EP; Sprecher SL; Larson SL; Fredrickson HL; Bader DF
    Chemosphere; 1999 Nov; 39(12):2057-72. PubMed ID: 10576106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccumulation kinetics of the conventional energetics TNT and RDX relative to insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles.
    Lotufo GR; Biedenbach JM; Sims JG; Chappell P; Stanley JK; Gust KA
    Environ Toxicol Chem; 2015 Apr; 34(4):880-6. PubMed ID: 25524181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate of RDX and TNT in agronomic plants.
    Vila M; Lorber-Pascal S; Laurent F
    Environ Pollut; 2007 Jul; 148(1):148-54. PubMed ID: 17254682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies.
    Ariyarathna T; Vlahos P; Tobias C; Smith R
    Environ Toxicol Chem; 2016 Jan; 35(1):47-55. PubMed ID: 26178383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioaccumulation of explosive compounds in the marine mussel, Mytilus galloprovincialis.
    Rosen G; Lotufo GR
    Ecotoxicol Environ Saf; 2007 Oct; 68(2):237-45. PubMed ID: 17629944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field validation of POCIS for monitoring at underwater munitions sites.
    Rosen G; Lotufo GR; George RD; Wild B; Rabalais LK; Morrison S; Belden JB
    Environ Toxicol Chem; 2018 Aug; 37(8):2257-2267. PubMed ID: 29687474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-body and body-part-specific bioconcentration of explosive compounds in sheepshead minnows.
    Lotufo GR
    Ecotoxicol Environ Saf; 2011 Mar; 74(3):301-6. PubMed ID: 21255837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity and accumulation of trinitrotoluene (TNT) and its metabolites in Atlantic salmon alevins exposed to an industrially polluted water.
    Leffler P; Brännäs E; Ragnvaldsson D; Wingfors H; Berglind R
    J Toxicol Environ Health A; 2014; 77(19):1183-91. PubMed ID: 25119739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaccumulation of 2,4,6-trinitrotoluene (TNT) and its metabolites leaking from corroded munition in transplanted blue mussels (M. edulis).
    Appel D; Strehse JS; Martin HJ; Maser E
    Mar Pollut Bull; 2018 Oct; 135():1072-1078. PubMed ID: 30301003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake and biotransformation of 2,4,6-trinitrotoluene (TNT) by microplantlet suspension culture of the marine red macroalga Portieria hornemannii.
    Cruz-Uribe O; Rorrer GL
    Biotechnol Bioeng; 2006 Feb; 93(3):401-12. PubMed ID: 16187335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of trinitrotoluene (TNT) in aquatic organisms: part 2--Bioconcentration in aquatic invertebrates and potential for trophic transfer to channel catfish (Ictalurus punctatus).
    Belden JB; Ownby DR; Lotufo GR; Lydy MJ
    Chemosphere; 2005 Mar; 58(9):1161-8. PubMed ID: 15667837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate and transport of TNT, RDX, and HMX in streambed sediments: Implications for riverbank filtration.
    Zheng W; Lichwa J; D'Alessio M; Ray C
    Chemosphere; 2009 Aug; 76(9):1167-77. PubMed ID: 19619888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants.
    Panz K; Miksch K
    J Environ Manage; 2012 Dec; 113():85-92. PubMed ID: 22996005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.