BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25451753)

  • 1. Immobilization of proteases on chitosan for the development of films with anti-biofilm properties.
    Elchinger PH; Delattre C; Faure S; Roy O; Badel S; Bernardi T; Taillefumier C; Michaud P
    Int J Biol Macromol; 2015 Jan; 72():1063-8. PubMed ID: 25451753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro production of biofilm in a flow cell system in a strain of Pseudomonas aeruginosa and Staphylococcus aureus and determination of efficiency of ciprofloxacin against them.
    Gupta S; Agarwal S; Sahoo DR; Muralidharan S
    Indian J Pathol Microbiol; 2011; 54(3):569-71. PubMed ID: 21934223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of proteases against biofilms of Staphylococcus aureus and Staphylococcus epidermidis.
    Elchinger PH; Delattre C; Faure S; Roy O; Badel S; Bernardi T; Taillefumier C; Michaud P
    Lett Appl Microbiol; 2014 Nov; 59(5):507-13. PubMed ID: 25041576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitosan improves anti-biofilm efficacy of gentamicin through facilitating antibiotic penetration.
    Mu H; Guo F; Niu H; Liu Q; Wang S; Duan J
    Int J Mol Sci; 2014 Dec; 15(12):22296-308. PubMed ID: 25479075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acceleration of protease effect on Staphylococcus aureus biofilm dispersal.
    Park JH; Lee JH; Cho MH; Herzberg M; Lee J
    FEMS Microbiol Lett; 2012 Oct; 335(1):31-8. PubMed ID: 22784033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Chitosan-Based Surfaces to Prevent Single- and Dual-Species Biofilms of
    Lima M; Teixeira-Santos R; Gomes LC; Faria SI; Valcarcel J; Vázquez JA; Cerqueira MA; Pastrana L; Bourbon AI; Mergulhão FJ
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular protease in Actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation.
    Park JH; Lee JH; Kim CJ; Lee JC; Cho MH; Lee J
    Biotechnol Lett; 2012 Apr; 34(4):655-61. PubMed ID: 22160331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria.
    Borges A; Saavedra MJ; Simões M
    Biofouling; 2012; 28(7):755-67. PubMed ID: 22823343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitosan coupling makes microbial biofilms susceptible to antibiotics.
    Zhang A; Mu H; Zhang W; Cui G; Zhu J; Duan J
    Sci Rep; 2013 Nov; 3():3364. PubMed ID: 24284335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial and Biofilm Modulating Potential of Ferulic Acid-Grafted Chitosan against Human Pathogenic Bacteria.
    Dasagrandhi C; Park S; Jung WK; Kim YM
    Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30042337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms.
    Teixeira PC; Leite GM; Domingues RJ; Silva J; Gibbs PA; Ferreira JP
    Int J Food Microbiol; 2007 Aug; 118(1):15-9. PubMed ID: 17610974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for testing drug susceptibility of Pseudomonas aeruginosa and Staphylococcus aureus grown in biofilms on medical devices.
    Kétyi I
    Acta Microbiol Immunol Hung; 1995; 42(2):215-9. PubMed ID: 7551716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilms of Listeria monocytogenes produced at 12 °C either in pure culture or in co-culture with Pseudomonas aeruginosa showed reduced susceptibility to sanitizers.
    Lourenço A; Machado H; Brito L
    J Food Sci; 2011 Mar; 76(2):M143-8. PubMed ID: 21535778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis.
    Shakibaie M; Forootanfar H; Golkari Y; Mohammadi-Khorsand T; Shakibaie MR
    J Trace Elem Med Biol; 2015 Jan; 29():235-41. PubMed ID: 25175509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofilm inhibiting activity of betacyanins from red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius) against Staphylococcus aureus and Pseudomonas aeruginosa biofilms.
    Yong YY; Dykes G; Lee SM; Choo WS
    J Appl Microbiol; 2019 Jan; 126(1):68-78. PubMed ID: 30153380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic antibiofilm efficacy of various commercial antiseptics, enzymes and EDTA: a study of Pseudomonas aeruginosa and Staphylococcus aureus biofilms.
    Lefebvre E; Vighetto C; Di Martino P; Larreta Garde V; Seyer D
    Int J Antimicrob Agents; 2016 Aug; 48(2):181-8. PubMed ID: 27424598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of bacterial adhesion and biofilm formation of sulfonated chitosan against Pseudomonas aeruginosa.
    Liu Y; Jiang Y; Zhu J; Huang J; Zhang H
    Carbohydr Polym; 2019 Feb; 206():412-419. PubMed ID: 30553340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilized enzymes affect biofilm formation.
    Cordeiro AL; Hippius C; Werner C
    Biotechnol Lett; 2011 Sep; 33(9):1897-904. PubMed ID: 21618024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the Thermo-Stability and Anti-Biofilm Activity of Alginate Lyase by Immobilization on Low Molecular Weight Chitosan Nanoparticles.
    Li S; Wang Y; Li X; Lee BS; Jung S; Lee MS
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of amylase and protease as antibiofilm agents by starch, casein, and yeast extract in Arthrobacter sp. CW01.
    Solihin J; Waturangi DE; Purwadaria T
    BMC Microbiol; 2021 Aug; 21(1):232. PubMed ID: 34425755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.