BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25451753)

  • 21. Antibacterial and Biofilm Modulating Potential of Ferulic Acid-Grafted Chitosan against Human Pathogenic Bacteria.
    Dasagrandhi C; Park S; Jung WK; Kim YM
    Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30042337
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Licheniocin 50.2 and Bacteriocins from Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 Inhibit Biofilms of Coagulase Negative Staphylococci and Listeria monocytogenes Clinical Isolates.
    Cirkovic I; Bozic DD; Draganic V; Lozo J; Beric T; Kojic M; Arsic B; Garalejic E; Djukic S; Stankovic S
    PLoS One; 2016; 11(12):e0167995. PubMed ID: 27930711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanistic insights into response of Staphylococcus aureus to bioelectric effect on polypyrrole/chitosan film.
    Zhang J; Neoh KG; Hu X; Kang ET
    Biomaterials; 2014 Sep; 35(27):7690-8. PubMed ID: 24934644
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polymicrobial Biofilm Inhibition Effects of Acetate-Buffered Chitosan Sponge Delivery Device.
    Jennings JA; Beenken KE; Parker AC; Smith JK; Courtney HS; Smeltzer MS; Haggard WO
    Macromol Biosci; 2016 Apr; 16(4):591-8. PubMed ID: 26756211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria.
    Furukawa S; Akiyoshi Y; O'Toole GA; Ogihara H; Morinaga Y
    Int J Food Microbiol; 2010 Mar; 138(1-2):176-80. PubMed ID: 20089325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis.
    Kalishwaralal K; BarathManiKanth S; Pandian SR; Deepak V; Gurunathan S
    Colloids Surf B Biointerfaces; 2010 Sep; 79(2):340-4. PubMed ID: 20493674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effectiveness of chitosan against mature biofilms formed by food related bacteria.
    Orgaz B; Lobete MM; Puga CH; San Jose C
    Int J Mol Sci; 2011 Jan; 12(1):817-28. PubMed ID: 21340015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzymes Enhance Biofilm Removal Efficiency of Cleaners.
    Stiefel P; Mauerhofer S; Schneider J; Maniura-Weber K; Rosenberg U; Ren Q
    Antimicrob Agents Chemother; 2016 Jun; 60(6):3647-52. PubMed ID: 27044552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biofilm susceptibility to metal toxicity.
    Harrison JJ; Ceri H; Stremick CA; Turner RJ
    Environ Microbiol; 2004 Dec; 6(12):1220-7. PubMed ID: 15560820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biofilm-forming capacity of Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa from ocular infections.
    Hou W; Sun X; Wang Z; Zhang Y
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5624-31. PubMed ID: 22736609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing antibiofilm activity with functional chitosan nanoparticles targeting biofilm cells and biofilm matrix.
    Tan Y; Ma S; Leonhard M; Moser D; Haselmann GM; Wang J; Eder D; Schneider-Stickler B
    Carbohydr Polym; 2018 Nov; 200():35-42. PubMed ID: 30177175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antibiofilm and antivirulence properties of chitosan-polypyrrole nanocomposites to Pseudomonas aeruginosa.
    Khan F; Manivasagan P; Pham DTN; Oh J; Kim SK; Kim YM
    Microb Pathog; 2019 Mar; 128():363-373. PubMed ID: 30684638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro and in vivo antibiofilm activity of a coral associated actinomycete against drug resistant Staphylococcus aureus biofilms.
    Bakkiyaraj D; Pandian SK
    Biofouling; 2010 Aug; 26(6):711-7. PubMed ID: 20706890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pseudomonas aeruginosa biofilm growth inhibition on medical plastic materials by immobilized esterases and acylase.
    Kisch JM; Utpatel C; Hilterhaus L; Streit WR; Liese A
    Chembiochem; 2014 Sep; 15(13):1911-9. PubMed ID: 25044227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chitosan-based rechargeable long-term antimicrobial and biofilm-controlling systems.
    Cao Z; Sun Y
    J Biomed Mater Res A; 2009 Jun; 89(4):960-7. PubMed ID: 18470925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polyphenols, Antioxidant, Antibacterial, and Biofilm Inhibitory Activities of Peel and Pulp of
    Fratianni F; Cozzolino A; De Feo V; Coppola R; Ombra MN; Nazzaro F
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31847295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Secretion of proteases by Pseudomonas aeruginosa biofilms exposed to ciprofloxacin.
    Ołdak E; Trafny EA
    Antimicrob Agents Chemother; 2005 Aug; 49(8):3281-8. PubMed ID: 16048937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effects of erythromycin and fosfomycin on Pseudomonas aeruginosa biofilm in vitro].
    Xu Z; Liu F; Wang X
    Zhonghua Jie He He Hu Xi Za Zhi; 2001 Jun; 24(6):342-4. PubMed ID: 11802985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of Laboratory Culture Media on in vitro Growth, Adhesion, and Biofilm Formation of Pseudomonas aeruginosa and Staphylococcus aureus.
    Wijesinghe G; Dilhari A; Gayani B; Kottegoda N; Samaranayake L; Weerasekera M
    Med Princ Pract; 2019; 28(1):28-35. PubMed ID: 30352435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fatty acyl compounds from marine Streptomyces griseoincarnatus strain HK12 against two major bio-film forming nosocomial pathogens; an in vitro and in silico approach.
    Kamarudheen N; Rao KVB
    Microb Pathog; 2019 Feb; 127():121-130. PubMed ID: 30508626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.