These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 25451776)
1. From microalgae oil to produce novel structured triacylglycerols enriched with unsaturated fatty acids. Wang J; Wang XD; Zhao XY; Liu X; Dong T; Wu FA Bioresour Technol; 2015 May; 184():405-414. PubMed ID: 25451776 [TBL] [Abstract][Full Text] [Related]
2. Production of new human milk fat substitutes by enzymatic acidolysis of microalgae oils from Nannochloropsis oculata and Isochrysis galbana. He Y; Qiu C; Guo Z; Huang J; Wang M; Chen B Bioresour Technol; 2017 Aug; 238():129-138. PubMed ID: 28433900 [TBL] [Abstract][Full Text] [Related]
3. Lipozyme RM IM-catalyzed acidolysis of Cinnamomum camphora seed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids. Zou XG; Hu JN; Zhao ML; Zhu XM; Li HY; Liu XR; Liu R; Deng ZY J Agric Food Chem; 2014 Oct; 62(43):10594-603. PubMed ID: 25298236 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of 1,3-dioleoyl-2-arachidonoylglycerol-rich structured lipids by lipase-catalyzed acidolysis of microbial oil from Mortierella alpina. Abed SM; Zou X; Ali AH; Jin Q; Wang X Bioresour Technol; 2017 Nov; 243():448-456. PubMed ID: 28688328 [TBL] [Abstract][Full Text] [Related]
5. Preparation of DHA-Rich Medium- and Long-Chain Triacylglycerols by Lipase-Catalyzed Acidolysis of Microbial Oil from Schizochytrium sp.with Medium-Chain Fatty Acids. Zou X; Ye L; He X; Wu S; Zhang H; Jin Q Appl Biochem Biotechnol; 2020 Jul; 191(3):1294-1314. PubMed ID: 32096059 [TBL] [Abstract][Full Text] [Related]
6. Selective synthesis of human milk fat-style structured triglycerides from microalgal oil in a microfluidic reactor packed with immobilized lipase. Wang J; Liu X; Wang XD; Dong T; Zhao XY; Zhu D; Mei YY; Wu GH Bioresour Technol; 2016 Nov; 220():132-141. PubMed ID: 27566521 [TBL] [Abstract][Full Text] [Related]
7. Lipase-catalyzed acidolysis of tripalmitin with hazelnut oil fatty acids and stearic acid to produce human milk fat substitutes. Sahin N; Akoh CC; Karaali A J Agric Food Chem; 2005 Jul; 53(14):5779-83. PubMed ID: 15998148 [TBL] [Abstract][Full Text] [Related]
8. Lipase-catalyzed incorporation of different Fatty acids into tripalmitin-enriched triacylglycerols: effect of reaction parameters. Qin XL; Yang B; Huang HH; Wang YH J Agric Food Chem; 2012 Mar; 60(9):2377-84. PubMed ID: 22360498 [TBL] [Abstract][Full Text] [Related]
9. Enzymatic interesterification of tripalmitin with vegetable oil blends for formulation of caprine milk infant formula analogs. Maduko CO; Akoh CC; Park YW J Dairy Sci; 2007 Feb; 90(2):594-601. PubMed ID: 17235135 [TBL] [Abstract][Full Text] [Related]
10. Candida rugosa lipase LIP1-catalyzed transesterification to produce human milk fat substitute. Srivastava A; Akoh CC; Chang SW; Lee GC; Shaw JF J Agric Food Chem; 2006 Jul; 54(14):5175-81. PubMed ID: 16819932 [TBL] [Abstract][Full Text] [Related]
11. Enzymatic preparation of structured triacylglycerols with arachidonic and palmitic acids at the sn-2 position for infant formula use. Wang X; Zou S; Miu Z; Jin Q; Wang X Food Chem; 2019 Jun; 283():331-337. PubMed ID: 30722880 [TBL] [Abstract][Full Text] [Related]
12. Preparation of human milk fat substitutes from palm stearin with arachidonic and docosahexaenoic acid: combination of enzymatic and physical methods. Zou XQ; Huang JH; Jin QZ; Liu YF; Tao GJ; Cheong LZ; Wang XG J Agric Food Chem; 2012 Sep; 60(37):9415-23. PubMed ID: 22920386 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of structured triacylglycerols containing caproic acid by lipase-catalyzed acidolysis: optimization by response surface methodology. Zhou D; Xu X; Mu H; Høy CE; Adler-Nissen J J Agric Food Chem; 2001 Dec; 49(12):5771-7. PubMed ID: 11743762 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of 1,3-dioleoyl-2-palmitoylglycerol. Qin XL; Wang YM; Wang YH; Huang HH; Yang B J Agric Food Chem; 2011 May; 59(10):5714-9. PubMed ID: 21510711 [TBL] [Abstract][Full Text] [Related]
15. The Enzymatic Preparation of Human Milk Fat Substitute Intermediate Rich in Palmitic Acid at sn-2 Position and Low-Unsaturated Fatty Acids at sn-1(3) Positions from Palm Oil Substrate. Shimane K; Ogawa S; Yamamoto Y; Hara S J Oleo Sci; 2021 Feb; 70(2):165-173. PubMed ID: 33455999 [TBL] [Abstract][Full Text] [Related]
17. Continuous Production of Dietetic Structured Lipids Using Crude Acidic Olive Pomace Oils. Souza-Gonçalves J; Fialho A; Soares CMF; Osório NM; Ferreira-Dias S Molecules; 2023 Mar; 28(6):. PubMed ID: 36985609 [TBL] [Abstract][Full Text] [Related]
18. Effects of Triacylglycerol Molecular Species on the Oxidation Behavior of Oils Containing α-Linolenic Acid. Dote S; Yamamoto Y; Hara S J Oleo Sci; 2016; 65(3):193-9. PubMed ID: 26935948 [TBL] [Abstract][Full Text] [Related]
19. Preparation of Chiral Triacylglycerols, sn-POO and sn-OOP, via Lipase-mediated Acidolysis Reaction. Yamamoto Y; Yoshida H; Nagai T; Hara S J Oleo Sci; 2018 Feb; 67(2):207-214. PubMed ID: 29367484 [TBL] [Abstract][Full Text] [Related]
20. Trace water activity could improve the formation of 1,3-oleic-2-medium chain-rich triacylglycerols by promoting acyl migration in the lipase RM IM catalyzed interesterification. Peng B; Chen F; Liu X; Hu JN; Zheng LF; Li J; Deng ZY Food Chem; 2020 May; 313():126130. PubMed ID: 31935664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]