BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

519 related articles for article (PubMed ID: 25452131)

  • 1. Identification of novel post-translational modifications in linker histones from chicken erythrocytes.
    Sarg B; Lopez R; Lindner H; Ponte I; Suau P; Roque A
    J Proteomics; 2015 Jan; 113():162-77. PubMed ID: 25452131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of post-translational modifications of the linker histones H1 and H5 from chicken erythrocytes using mass spectrometry.
    Snijders AP; Pongdam S; Lambert SJ; Wood CM; Baldwin JP; Dickman MJ
    J Proteome Res; 2008 Oct; 7(10):4326-35. PubMed ID: 18754630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics.
    Izzo A; Schneider R
    Biochim Biophys Acta; 2016 Mar; 1859(3):486-95. PubMed ID: 26348411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing and combining capillary electrophoresis electrospray ionization mass spectrometry and nano-liquid chromatography electrospray ionization mass spectrometry for the characterization of post-translationally modified histones.
    Sarg B; Faserl K; Kremser L; Halfinger B; Sebastiano R; Lindner HH
    Mol Cell Proteomics; 2013 Sep; 12(9):2640-56. PubMed ID: 23720761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined bottom-up and top-down mass spectrometry analyses of the pattern of post-translational modifications of Drosophila melanogaster linker histone H1.
    Bonet-Costa C; Vilaseca M; Diema C; Vujatovic O; Vaquero A; Omeñaca N; Castejón L; Bernués J; Giralt E; Azorín F
    J Proteomics; 2012 Jul; 75(13):4124-38. PubMed ID: 22647927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone H1 Post-Translational Modifications: Update and Future Perspectives.
    Andrés M; García-Gomis D; Ponte I; Suau P; Roque A
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linker histone subtype composition and affinity for chromatin in situ in nucleated mature erythrocytes.
    Koutzamani E; Loborg H; Sarg B; Lindner HH; Rundquist I
    J Biol Chem; 2002 Nov; 277(47):44688-94. PubMed ID: 12223471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-Translation Modifications and Mutations of Human Linker Histone Subtypes: Their Manifestation in Disease.
    Kumar A; Maurya P; Hayes JJ
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-translational modifications of the linker histone variants and their association with cell mechanisms.
    Wood C; Snijders A; Williamson J; Reynolds C; Baldwin J; Dickman M
    FEBS J; 2009 Jul; 276(14):3685-97. PubMed ID: 19490123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The missing link
    Prendergast L; Reinberg D
    Genes Dev; 2021 Jan; 35(1-2):40-58. PubMed ID: 33397728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactome of Site-Specifically Acetylated Linker Histone H1.
    Höllmüller E; Greiner K; Kienle SM; Scheffner M; Marx A; Stengel F
    J Proteome Res; 2021 Sep; 20(9):4443-4451. PubMed ID: 34351766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics and dispensability of variant-specific histone H1 Lys-26/Ser-27 and Thr-165 post-translational modifications.
    Terme JM; Millán-Ariño L; Mayor R; Luque N; Izquierdo-Bouldstridge A; Bustillos A; Sampaio C; Canes J; Font I; Sima N; Sancho M; Torrente L; Forcales S; Roque A; Suau P; Jordan A
    FEBS Lett; 2014 Jun; 588(14):2353-62. PubMed ID: 24873882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the higher-order structure of chromatin by histones H1 and H5.
    Allan J; Cowling GJ; Harborne N; Cattini P; Craigie R; Gould H
    J Cell Biol; 1981 Aug; 90(2):279-88. PubMed ID: 7287811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone H3 thiol reactivity and acetyltransferases in chicken erythrocyte nuclei.
    Chan S; Attisano L; Lewis PN
    J Biol Chem; 1988 Oct; 263(30):15643-51. PubMed ID: 3170603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactome of intact chromatosome variants with site-specifically ubiquitylated and acetylated linker histone H1.2.
    Saumer P; Scheffner M; Marx A; Stengel F
    Nucleic Acids Res; 2024 Jan; 52(1):101-113. PubMed ID: 37994785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain.
    Tweedie-Cullen RY; Brunner AM; Grossmann J; Mohanna S; Sichau D; Nanni P; Panse C; Mansuy IM
    PLoS One; 2012; 7(5):e36980. PubMed ID: 22693562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translational modifications of linker histone H1 variants in mammals.
    Starkova TY; Polyanichko AM; Artamonova TO; Khodorkovskii MA; Kostyleva EI; Chikhirzhina EV; Tomilin AN
    Phys Biol; 2017 Feb; 14(1):016005. PubMed ID: 28000612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-translational modifications of the intrinsically disordered terminal domains of histone H1: effects on secondary structure and chromatin dynamics.
    Roque A; Ponte I; Suau P
    Chromosoma; 2017 Feb; 126(1):83-91. PubMed ID: 27098855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle.
    Hergeth SP; Schneider R
    EMBO Rep; 2015 Nov; 16(11):1439-53. PubMed ID: 26474902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of linker histones to the core nucleosome.
    Ali Z; Singh N
    J Biol Chem; 1987 Sep; 262(27):12989-93. PubMed ID: 3654599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.