BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 25452134)

  • 61. Virulence of Leucobacter chromiireducens subsp. solipictus to Caenorhabditis elegans: characterization of a novel host-pathogen interaction.
    Muir RE; Tan MW
    Appl Environ Microbiol; 2008 Jul; 74(13):4185-98. PubMed ID: 18487405
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Tandem Mass Tag-Based Quantitative Proteomics and Virulence Phenotype of Hemolymph-Treated Bacillus thuringiensis kurstaki Cells Reveal New Insights on Bacterial Pathogenesis in Insects.
    Sun Y; Yang L; Rodríguez-Cabrera L; Ding Y; Leng C; Qiao H; Huang S; Kan Y; Yao L; Wright DJ; Li D; Ayra-Pardo C
    Microbiol Spectr; 2021 Oct; 9(2):e0060421. PubMed ID: 34704785
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Innate immunity in C. elegans.
    Engelmann I; Pujol N
    Adv Exp Med Biol; 2010; 708():105-21. PubMed ID: 21528695
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A subset of naturally isolated Bacillus strains show extreme virulence to the free-living nematodes Caenorhabditis elegans and Pristionchus pacificus.
    Rae R; Iatsenko I; Witte H; Sommer RJ
    Environ Microbiol; 2010 Nov; 12(11):3007-21. PubMed ID: 20626457
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High instability of a nematicidal Cry toxin plasmid in Bacillus thuringiensis.
    Sheppard AE; Nakad R; Saebelfeld M; Masche AC; Dierking K; Schulenburg H
    J Invertebr Pathol; 2016 Jan; 133():34-40. PubMed ID: 26592941
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genomic analysis of immune response against Vibrio cholerae hemolysin in Caenorhabditis elegans.
    Sahu SN; Lewis J; Patel I; Bozdag S; Lee JH; LeClerc JE; Cinar HN
    PLoS One; 2012; 7(5):e38200. PubMed ID: 22675448
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Novel Virulence Phenotype Rapidly Assesses
    Feistel DJ; Elmostafa R; Nguyen N; Penley M; Morran L; Hickman MA
    mSphere; 2019 Apr; 4(2):. PubMed ID: 30971447
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Caenorhabditis elegans proteomics comes of age.
    Shim YH; Paik YK
    Proteomics; 2010 Feb; 10(4):846-57. PubMed ID: 20029841
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A novel metalloproteinase virulence factor is involved in Bacillus thuringiensis pathogenesis in nematodes and insects.
    Peng D; Lin J; Huang Q; Zheng W; Liu G; Zheng J; Zhu L; Sun M
    Environ Microbiol; 2016 Mar; 18(3):846-62. PubMed ID: 26995589
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Identification of a Conserved, Orphan G Protein-Coupled Receptor Required for Efficient Pathogen Clearance in Caenorhabditis elegans.
    Anderson A; Chew YL; Schafer W; McMullan R
    Infect Immun; 2019 Apr; 87(4):. PubMed ID: 30692178
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Quantitative proteome analysis reveals RNA processing factors as modulators of ionizing radiation-induced apoptosis in the C. elegans germline.
    Tomazella GG; Kassahun H; Nilsen H; Thiede B
    J Proteome Res; 2012 Aug; 11(8):4277-88. PubMed ID: 22757771
    [TBL] [Abstract][Full Text] [Related]  

  • 72. WWP-1 is a novel modulator of the DAF-2 insulin-like signaling network involved in pore-forming toxin cellular defenses in Caenorhabditis elegans.
    Chen CS; Bellier A; Kao CY; Yang YL; Chen HD; Los FC; Aroian RV
    PLoS One; 2010 Mar; 5(3):e9494. PubMed ID: 20209166
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Changes in Caenorhabditis elegans life span and selective innate immune genes during Staphylococcus aureus infection.
    JebaMercy G; Pandian SK; Balamurugan K
    Folia Microbiol (Praha); 2011 Sep; 56(5):373-80. PubMed ID: 21853381
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A worm rich in protein: Quantitative, differential, and global proteomics in Caenorhabditis elegans.
    Schrimpf SP; Hengartner MO
    J Proteomics; 2010 Oct; 73(11):2186-97. PubMed ID: 20398808
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Use of RNAi as a preliminary tool for screening putative receptors of nematicidal toxins from Bacillus thuringiensis.
    García-Montelongo M; González-Villarreal SE; Del Rincón-Castro MC; Ibarra JE
    Arch Microbiol; 2021 May; 203(4):1649-1656. PubMed ID: 33432376
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Interactions with microbial pathogens.
    Darby C
    WormBook; 2005 Sep; ():1-15. PubMed ID: 18050390
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Quantitative Profiling Identifies Potential Regulatory Proteins Involved in Development from Dauer Stage to L4 Stage in Caenorhabditis elegans.
    Kim S; Lee HJ; Hahm JH; Jeong SK; Park DH; Hancock WS; Paik YK
    J Proteome Res; 2016 Feb; 15(2):531-9. PubMed ID: 26751275
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Novel Immune Modulators Enhance
    Hummell NA; Revtovich AV; Kirienko NV
    mSphere; 2021 Jan; 6(1):. PubMed ID: 33408224
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Detection of β-exotoxin synthesis in Bacillus thuringiensis using an easy bioassay with the nematode Caenorhabditis elegans.
    Sánchez-Soto AI; Saavedra-González GI; Ibarra JE; Salcedo-Hernández R; Barboza-Corona JE; Del Rincón-Castro MC
    Lett Appl Microbiol; 2015 Dec; 61(6):562-7. PubMed ID: 26381648
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Dissimilar Crystal Proteins Cry5Ca1 and Cry5Da1 Synergistically Act against Meloidogyne incognita and Delay Cry5Ba-Based Nematode Resistance.
    Geng C; Liu Y; Li M; Tang Z; Muhammad S; Zheng J; Wan D; Peng D; Ruan L; Sun M
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28710264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.