These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25453039)

  • 1. High throughput and multiplex localization of proteins and cells for in situ micropatterning using pneumatic microfluidics.
    Wang JC; Liu W; Tu Q; Ma C; Zhao L; Wang Y; Ouyang J; Pang L; Wang J
    Analyst; 2015 Feb; 140(3):827-36. PubMed ID: 25453039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic trapping and high-throughput patterning of cells using pneumatic microstructures in an integrated microfluidic device.
    Liu W; Li L; Wang JC; Tu Q; Ren L; Wang Y; Wang J
    Lab Chip; 2012 May; 12(9):1702-9. PubMed ID: 22430256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics.
    Liu W; Wang JC; Wang J
    Lab Chip; 2015 Feb; 15(4):1195-204. PubMed ID: 25571856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterning multiplex protein microarrays in a single microfluidic channel.
    Didar TF; Foudeh AM; Tabrizian M
    Anal Chem; 2012 Jan; 84(2):1012-8. PubMed ID: 22124457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities.
    Choi JW; Oh KW; Thomas JH; Heineman WR; Halsall HB; Nevin JH; Helmicki AJ; Henderson HT; Ahn CH
    Lab Chip; 2002 Feb; 2(1):27-30. PubMed ID: 15100857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspiration-mediated hydrogel micropatterning using rail-based open microfluidic devices for high-throughput 3D cell culture.
    Park D; Lee J; Lee Y; Son K; Choi JW; Jeang WJ; Choi H; Hwang Y; Kim HY; Jeon NL
    Sci Rep; 2021 Oct; 11(1):19986. PubMed ID: 34620916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High throughput cell cycle analysis using microfluidic image cytometry (μFIC).
    Yoo HJ; Park J; Yoon TH
    Cytometry A; 2013 Apr; 83(4):356-62. PubMed ID: 23418122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micropatterning with a liquid crystal display (LCD) projector.
    Itoga K; Kobayashi J; Yamato M; Okano T
    Methods Cell Biol; 2014; 119():141-58. PubMed ID: 24439283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional protein micropatterning for drug design and discovery.
    You C; Piehler J
    Expert Opin Drug Discov; 2016; 11(1):105-19. PubMed ID: 26624534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pneumatic microfluidics-based multiplex single-cell array.
    Zhao L; Ma C; Shen S; Tian C; Xu J; Tu Q; Li T; Wang Y; Wang J
    Biosens Bioelectron; 2016 Apr; 78():423-430. PubMed ID: 26655183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Next generation microfluidic platforms for high-throughput protein biochemistry.
    Maerkl SJ
    Curr Opin Biotechnol; 2011 Feb; 22(1):59-65. PubMed ID: 20832278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interference-free Micro/nanoparticle Cell Engineering by Use of High-Throughput Microfluidic Separation.
    Yeo DC; Wiraja C; Zhou Y; Tay HM; Xu C; Hou HW
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20855-64. PubMed ID: 26355568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic photochemical lipid micropatterning for manipulation of nonadherent mammalian cells.
    Yamahira S; Takasaki Y; Yamaguchi S; Sumaru K; Kanamori T; Nagamune T
    Methods Cell Biol; 2014; 120():131-44. PubMed ID: 24484661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic platform for high-throughput multiplexed protein quantitation.
    Volpetti F; Garcia-Cordero J; Maerkl SJ
    PLoS One; 2015; 10(2):e0117744. PubMed ID: 25680117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative study of the dynamic tumor-endothelial cell interactions through an integrated microfluidic coculture system.
    Zheng C; Zhao L; Chen G; Zhou Y; Pang Y; Huang Y
    Anal Chem; 2012 Feb; 84(4):2088-93. PubMed ID: 22263607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PDMS bonding to a bio-friendly photoresist via self-polymerized poly(dopamine) adhesive for complex protein micropatterning inside microfluidic channels.
    Kim M; Song KH; Doh J
    Colloids Surf B Biointerfaces; 2013 Dec; 112():134-8. PubMed ID: 23973671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pneumatic pressure-driven multi-throughput microfluidic circulation culture system.
    Satoh T; Narazaki G; Sugita R; Kobayashi H; Sugiura S; Kanamori T
    Lab Chip; 2016 Jun; 16(12):2339-48. PubMed ID: 27229626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidics-based laser cell-micropatterning system.
    Erdman N; Schmidt L; Qin W; Yang X; Lin Y; DeSilva MN; Gao BZ
    Biofabrication; 2014 Sep; 6(3):035025. PubMed ID: 25190714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Straightforward neuron micropatterning and neuronal network construction on cell-repellent polydimethylsiloxane using microfluidics-guided functionalized Pluronic modification.
    Liu W; Fu W; Sun M; Han K; Hu R; Liu D; Wang J
    Analyst; 2021 Jan; 146(2):454-462. PubMed ID: 33491017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.