These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25453075)

  • 21. Direct measurement of the lamellipodial protrusive force in a migrating cell.
    Prass M; Jacobson K; Mogilner A; Radmacher M
    J Cell Biol; 2006 Sep; 174(6):767-72. PubMed ID: 16966418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Weak force stalls protrusion at the leading edge of the lamellipodium.
    Bohnet S; Ananthakrishnan R; Mogilner A; Meister JJ; Verkhovsky AB
    Biophys J; 2006 Mar; 90(5):1810-20. PubMed ID: 16326894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A simple method for measuring the relative force exerted by myosin on actin filaments in the in vitro motility assay: evidence that tropomyosin and troponin increase force in single thin filaments.
    Bing W; Knott A; Marston SB
    Biochem J; 2000 Sep; 350 Pt 3(Pt 3):693-9. PubMed ID: 10970781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell motility driven by actin polymerization.
    Mogilner A; Oster G
    Biophys J; 1996 Dec; 71(6):3030-45. PubMed ID: 8968574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-assembly of actin monomers into long filaments: Brownian dynamics simulations.
    Guo K; Shillcock J; Lipowsky R
    J Chem Phys; 2009 Jul; 131(1):015102. PubMed ID: 19586123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Actin filament branching and protrusion velocity in a simple 1D model of a motile cell.
    Dawes AT; Bard Ermentrout G; Cytrynbaum EN; Edelstein-Keshet L
    J Theor Biol; 2006 Sep; 242(2):265-79. PubMed ID: 16600307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Force-velocity relationship of single actin filament interacting with immobilised myosin measured by electromagnetic technique.
    Holohan SJ; Marston SB
    IEE Proc Nanobiotechnol; 2005 Jun; 152(3):113-20. PubMed ID: 16441167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coarse-grained Brownian ratchet model of membrane protrusion on cellular scale.
    Inoue Y; Adachi T
    Biomech Model Mechanobiol; 2011 Jul; 10(4):495-503. PubMed ID: 20721679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the mechanisms of cortical actin flow and its role in cytoskeletal organisation of fibroblasts.
    Heath JP; Holifield BF
    Symp Soc Exp Biol; 1993; 47():35-56. PubMed ID: 8165576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of actin filament assembly by Arp2/3 complex and formins.
    Pollard TD
    Annu Rev Biophys Biomol Struct; 2007; 36():451-77. PubMed ID: 17477841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lamellipodia architecture: actin filament turnover and the lateral flow of actin filaments during motility.
    Small JV
    Semin Cell Biol; 1994 Jun; 5(3):157-63. PubMed ID: 7919229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front.
    Koestler SA; Auinger S; Vinzenz M; Rottner K; Small JV
    Nat Cell Biol; 2008 Mar; 10(3):306-13. PubMed ID: 18278037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The forces behind cell movement.
    Ananthakrishnan R; Ehrlicher A
    Int J Biol Sci; 2007 Jun; 3(5):303-17. PubMed ID: 17589565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Actin dynamics, architecture, and mechanics in cell motility.
    Blanchoin L; Boujemaa-Paterski R; Sykes C; Plastino J
    Physiol Rev; 2014 Jan; 94(1):235-63. PubMed ID: 24382887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Force-velocity measurements of a few growing actin filaments.
    Brangbour C; du Roure O; Helfer E; Démoulin D; Mazurier A; Fermigier M; Carlier MF; Bibette J; Baudry J
    PLoS Biol; 2011 Apr; 9(4):e1000613. PubMed ID: 21541364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organization and polarity of actin filament networks in cells: implications for the mechanism of myosin-based cell motility.
    Cramer LP
    Biochem Soc Symp; 1999; 65():173-205. PubMed ID: 10320939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cooperative symmetry-breaking by actin polymerization in a model for cell motility.
    van Oudenaarden A; Theriot JA
    Nat Cell Biol; 1999 Dec; 1(8):493-9. PubMed ID: 10587645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Actin-based propulsion of a microswimmer.
    Leshansky AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):012901. PubMed ID: 16907142
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A "primer"-based mechanism underlies branched actin filament network formation and motility.
    Achard V; Martiel JL; Michelot A; Guérin C; Reymann AC; Blanchoin L; Boujemaa-Paterski R
    Curr Biol; 2010 Mar; 20(5):423-8. PubMed ID: 20188562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of fluorescently labelled deoxyribonuclease I to spatially measure G-actin levels in migrating and non-migrating cells.
    Cramer LP; Briggs LJ; Dawe HR
    Cell Motil Cytoskeleton; 2002 Jan; 51(1):27-38. PubMed ID: 11810694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.