BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 25453104)

  • 1. Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella.
    Barbier T; Collard F; Zúñiga-Ripa A; Moriyón I; Godard T; Becker J; Wittmann C; Van Schaftingen E; Letesson JJ
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17815-20. PubMed ID: 25453104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erythritol catabolism by Brucella abortus.
    Sperry JF; Robertson DC
    J Bacteriol; 1975 Feb; 121(2):619-30. PubMed ID: 163226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel gluconeogenic route enables efficient use of erythritol in zoonotic
    Lázaro-Antón L; Veiga-da-Cunha M; Elizalde-Bielsa A; Chevalier N; Conde-Álvarez R; Iriarte M; Letesson JJ; Moriyón I; Van Schaftingen E; Zúñiga-Ripa A
    Front Vet Sci; 2024; 11():1328293. PubMed ID: 38601913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of an enzyme which catalyzes isomerization and epimerization of D-erythrose 4-phosphate.
    Terada T; Mukae H; Ohashi K; Hosomi S; Mizoguchi T; Uehara K
    Eur J Biochem; 1985 Apr; 148(2):345-51. PubMed ID: 3987693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of growth by erythritol catabolism in Brucella abortus.
    Sperry JF; Robertson DC
    J Bacteriol; 1975 Oct; 124(1):391-7. PubMed ID: 170249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythritol metabolism in wild-type and mutant strains of Schizophyllum commune.
    Braun ML; Niederpruem DJ
    J Bacteriol; 1969 Nov; 100(2):625-34. PubMed ID: 4390964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional expression and characterization of EryA, the erythritol kinase of Brucella abortus, and enzymatic synthesis of L-erythritol-4-phosphate.
    Lillo AM; Tetzlaff CN; Sangari FJ; Cane DE
    Bioorg Med Chem Lett; 2003 Feb; 13(4):737-9. PubMed ID: 12639570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The significance of sedoheptulose 1,7-bisphosphate in the metabolism and regulation of the pentose pathway in liver.
    Williams JF; Blackmore PF; Arora KK
    Biochem Int; 1985 Oct; 11(4):599-610. PubMed ID: 4084320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribose-5-phosphate biosynthesis in Methanocaldococcus jannaschii occurs in the absence of a pentose-phosphate pathway.
    Grochowski LL; Xu H; White RH
    J Bacteriol; 2005 Nov; 187(21):7382-9. PubMed ID: 16237021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathway and regulation of erythritol formation in Leuconostoc oenos.
    Veiga-da-Cunha M; Santos H; Van Schaftingen E
    J Bacteriol; 1993 Jul; 175(13):3941-8. PubMed ID: 8391532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The enzymes of the classical pentose phosphate pathway display differential activities in procyclic and bloodstream forms of Trypanosoma brucei.
    Cronín CN; Nolan DP; Voorheis HP
    FEBS Lett; 1989 Feb; 244(1):26-30. PubMed ID: 2924907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-13-enriched carbohydrates: preparation of triose, tetrose, and pentose phosphates.
    Serianni AS; Pierce J; Barker R
    Biochemistry; 1979 Apr; 18(7):1192-9. PubMed ID: 218615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Yarrowia lipolytica erythritol catabolism ends with erythrose phosphate.
    Niang PM; Arguelles-Arias A; Steels S; Denies O; Nicaud JM; Fickers P
    Cell Biol Int; 2020 Feb; 44(2):651-660. PubMed ID: 31750586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous expression and characterization of bacterial 2-C-methyl-D-erythritol-4-phosphate pathway in Saccharomyces cerevisiae.
    Carlsen S; Ajikumar PK; Formenti LR; Zhou K; Phon TH; Nielsen ML; Lantz AE; Kielland-Brandt MC; Stephanopoulos G
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):5753-69. PubMed ID: 23636690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-oxidative synthesis of pentose 5-phosphate from hexose 6-phosphate and triose phosphate by the L-type pentose pathway.
    Williams JF; Blackmore PF
    Int J Biochem; 1983; 15(6):797-816. PubMed ID: 6862092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway.
    Wanke M; Skorupinska-Tudek K; Swiezewska E
    Acta Biochim Pol; 2001; 48(3):663-72. PubMed ID: 11833775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of enzymic isomerization and epimerization of D-erythrose 4-phosphate.
    Hosomi S; Nakai N; Kogita J; Terada T; Mizoguchi T
    Biochem J; 1986 Nov; 239(3):739-43. PubMed ID: 3827825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brucella central carbon metabolism: an update.
    Barbier T; Zúñiga-Ripa A; Moussa S; Plovier H; Sternon JF; Lázaro-Antón L; Conde-Álvarez R; De Bolle X; Iriarte M; Moriyón I; Letesson JJ
    Crit Rev Microbiol; 2018 Mar; 44(2):182-211. PubMed ID: 28604247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the behavior of eryC mutants of Brucella suis attenuated in macrophages.
    Burkhardt S; Jiménez de Bagüés MP; Liautard JP; Köhler S
    Infect Immun; 2005 Oct; 73(10):6782-90. PubMed ID: 16177356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic isomerization and epimerization of D-erythrose 4-phosphate and its quantitative analysis by gas chromatography/mass spectrometry.
    Ohashi K; Terada T; Kohno T; Hosomi S; Mizoguchi T; Uehara K
    Eur J Biochem; 1984 Jul; 142(2):347-53. PubMed ID: 6547672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.