These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 25453209)
1. Enhanced photocatalytic-electrolytic degradation of Reactive Brilliant Red X-3B in the presence of water jet cavitation. Wang X; Jia J; Wang Y Ultrason Sonochem; 2015 Mar; 23():93-9. PubMed ID: 25453209 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical degradation of reactive dye in the presence of water jet cavitation. Wang X; Jia J; Wang Y Ultrason Sonochem; 2010 Mar; 17(3):515-20. PubMed ID: 19945899 [TBL] [Abstract][Full Text] [Related]
3. Degradation of C.I. Reactive Red 2 through photocatalysis coupled with water jet cavitation. Wang X; Jia J; Wang Y J Hazard Mater; 2011 Jan; 185(1):315-21. PubMed ID: 20940086 [TBL] [Abstract][Full Text] [Related]
4. Degradation of azo dye active brilliant red X-3B by composite ferrate solution. Xu GR; Zhang YP; Li GB J Hazard Mater; 2009 Jan; 161(2-3):1299-305. PubMed ID: 18555598 [TBL] [Abstract][Full Text] [Related]
5. Enhanced degradation of reactive brilliant red X-3B by photocatalysis integrated with micro-electrolysis. Cheng G; Zhang Y; Sun L; Wan J; Li Z; Dang C; Fu J Environ Sci Pollut Res Int; 2021 Sep; 28(36):49899-49912. PubMed ID: 33945093 [TBL] [Abstract][Full Text] [Related]
6. TiO2 nanofibre assisted photocatalytic degradation of reactive blue 19 dye from aqueous solution. Rezaee A; Ghaneian MT; Taghavinia N; Aminian MK; Hashemian SJ Environ Technol; 2009 Mar; 30(3):233-9. PubMed ID: 19438055 [TBL] [Abstract][Full Text] [Related]
7. Degradation of reactive brilliant red K-2BP in aqueous solution using swirling jet-induced cavitation combined with H2O2. Wang J; Wang X; Guo P; Yu J Ultrason Sonochem; 2011 Mar; 18(2):494-500. PubMed ID: 20826108 [TBL] [Abstract][Full Text] [Related]
8. Degradation of Active Brilliant Red X-3B by a microwave discharge electrodeless lamp in the presence of activated carbon. Fu J; Wen T; Wang Q; Zhang XW; Zeng QF; An SQ; Zhu HL Environ Technol; 2010 Jun; 31(7):771-9. PubMed ID: 20586239 [TBL] [Abstract][Full Text] [Related]
9. Photocatalytic degradation of triazinic ring-containing azo dye (Reactive Red 198) by using immobilized TiO2 photoreactor: bench scale study. Mahmoodi NM; Arami M; Limaee NY J Hazard Mater; 2006 May; 133(1-3):113-8. PubMed ID: 16298047 [TBL] [Abstract][Full Text] [Related]
10. Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections. Daneshvar N; Sorkhabi HA; Kasiri MB J Hazard Mater; 2004 Aug; 112(1-2):55-62. PubMed ID: 15225930 [TBL] [Abstract][Full Text] [Related]
11. Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure. Khataee AR; Pons MN; Zahraa O J Hazard Mater; 2009 Aug; 168(1):451-7. PubMed ID: 19278779 [TBL] [Abstract][Full Text] [Related]
12. Photocatalytic decolourisation of Reactive Red 4 dye by an immobilised TiO2/chitosan layer by layer system. Nawi MA; Sabar S; Sheilatina J Colloid Interface Sci; 2012 Apr; 372(1):80-7. PubMed ID: 22321991 [TBL] [Abstract][Full Text] [Related]
13. Decolourization of dye-containing effluent using mineral coagulants produced by electrocoagulation. Zidane F; Drogui P; Lekhlif B; Bensaid J; Blais JF; Belcadi S; El Kacemi K J Hazard Mater; 2008 Jun; 155(1-2):153-63. PubMed ID: 18155356 [TBL] [Abstract][Full Text] [Related]
14. Treatment of wastewater containing azo dye reactive brilliant red X-3B using sequential ozonation and upflow biological aerated filter process. Lu X; Yang B; Chen J; Sun R J Hazard Mater; 2009 Jan; 161(1):241-5. PubMed ID: 18462873 [TBL] [Abstract][Full Text] [Related]
15. Comparison of several advanced oxidation processes for the decolorization of Reactive Red 120 azo dye in aqueous solution. Kusvuran E; Gulnaz O; Irmak S; Atanur OM; Yavuz HI; Erbatur O J Hazard Mater; 2004 Jun; 109(1-3):85-93. PubMed ID: 15177749 [TBL] [Abstract][Full Text] [Related]
16. Mineralization and kinetics of Reactive Brilliant Red X-3B by a combined anaerobic-aerobic bioprocess inoculated with the coculture of fungus and bacterium. Shi S; Ma F; Sun T; Li A; Zhou J; Qu Y Appl Biochem Biotechnol; 2014 Jan; 172(2):1106-20. PubMed ID: 24142384 [TBL] [Abstract][Full Text] [Related]
17. Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. Bizani E; Fytianos K; Poulios I; Tsiridis V J Hazard Mater; 2006 Aug; 136(1):85-94. PubMed ID: 16406296 [TBL] [Abstract][Full Text] [Related]
18. Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions. Zhang J; Zhang Y; Quan X; Chen S; Afzal S Bioresour Technol; 2013 May; 136():273-80. PubMed ID: 23567691 [TBL] [Abstract][Full Text] [Related]
19. Photoeletrolytic system applied to remazol red brilliant degradation. Sousa ML; Moraes PB; Bidoia ED Water Sci Technol; 2011; 63(4):613-7. PubMed ID: 21330704 [TBL] [Abstract][Full Text] [Related]
20. Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater. Yi F; Chen S; Yuan C J Hazard Mater; 2008 Aug; 157(1):79-87. PubMed ID: 18258359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]