These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Extraction of triterpenoids and phenolic compounds from Ganoderma lucidum: optimization study using the response surface methodology. Oludemi T; Barros L; Prieto MA; Heleno SA; Barreiro MF; Ferreira ICFR Food Funct; 2018 Jan; 9(1):209-226. PubMed ID: 29215673 [TBL] [Abstract][Full Text] [Related]
10. Added Value of Hrólfsdóttir AÞ; Arason S; Sveinsdóttir HI; Gudjónsdóttir M Mar Drugs; 2022 May; 20(6):. PubMed ID: 35736143 [No Abstract] [Full Text] [Related]
11. Optimization of ultrasonic-assisted extraction conditions for bioactive components from coffee leaves using the Taguchi design and response surface methodology. Chen X; Ding J; Ji D; He S; Ma H J Food Sci; 2020 Jun; 85(6):1742-1751. PubMed ID: 32449951 [TBL] [Abstract][Full Text] [Related]
12. Optimization of ultrasound-assisted extraction of phenolic compounds from grapefruit (Citrus paradisi Macf.) leaves via D-optimal design and artificial neural network design with categorical and quantitative variables. Ciğeroğlu Z; Aras Ö; Pinto CA; Bayramoglu M; Kırbaşlar Şİ; Lorenzo JM; Barba FJ; Saraiva JA; Şahin S J Sci Food Agric; 2018 Sep; 98(12):4584-4596. PubMed ID: 29508393 [TBL] [Abstract][Full Text] [Related]
13. Optimization of Ultrasonic Extraction Parameters for the Recovery of Phenolic Compounds in Brown Seaweed: Comparison with Conventional Techniques. Lee ZJ; Xie C; Duan X; Ng K; Suleria HAR Antioxidants (Basel); 2024 Mar; 13(4):. PubMed ID: 38671858 [TBL] [Abstract][Full Text] [Related]
14. Optimization of ultrasonic-assisted extraction of phenolic antioxidants from Malus baccata (Linn.) Borkh. using response surface methodology. Wang L; Wang Z; Li X J Sep Sci; 2013 May; 36(9-10):1652-8. PubMed ID: 23436450 [TBL] [Abstract][Full Text] [Related]
15. Antioxidant and Antidiabetic Properties of Phlorotannins from Gisbert M; Franco D; Sineiro J; Moreira R Molecules; 2023 Jun; 28(13):. PubMed ID: 37446599 [TBL] [Abstract][Full Text] [Related]
16. Microbial Population Changes in Decaying Ihua MW; Guihéneuf F; Mohammed H; Margassery LM; Jackson SA; Stengel DB; Clarke DJ; Dobson ADW Mar Drugs; 2019 Mar; 17(4):. PubMed ID: 30934874 [TBL] [Abstract][Full Text] [Related]
17. Impact of a (poly)phenol-rich extract from the brown algae Ascophyllum nodosum on DNA damage and antioxidant activity in an overweight or obese population: a randomized controlled trial. Baldrick FR; McFadden K; Ibars M; Sung C; Moffatt T; Megarry K; Thomas K; Mitchell P; Wallace JMW; Pourshahidi LK; Ternan NG; Corona G; Spencer J; Yaqoob P; Hotchkiss S; Campbell R; Moreno-Rojas JM; Cuevas FJ; Pereira-Caro G; Rowland I; Gill CIR Am J Clin Nutr; 2018 Oct; 108(4):688-700. PubMed ID: 30321272 [TBL] [Abstract][Full Text] [Related]
18. Optimization of ultrasound-assisted hydroalcoholic extraction of phenolic compounds from walnut leaves using response surface methodology. Nour V; Trandafir I; Cosmulescu S Pharm Biol; 2016 Oct; 54(10):2176-87. PubMed ID: 26959811 [TBL] [Abstract][Full Text] [Related]
19. Impact of drying on the sodium alginate obtained after polyphenols ultrasound-assisted extraction from Ascophyllum nodosum seaweeds. Montes L; Gisbert M; Hinojosa I; Sineiro J; Moreira R Carbohydr Polym; 2021 Nov; 272():118455. PubMed ID: 34420715 [TBL] [Abstract][Full Text] [Related]
20. Extracts from the edible seaweed, Ascophyllum nodosum, inhibit lipase activity in vitro: contributions of phenolic and polysaccharide components. Austin C; Stewart D; Allwood JW; McDougall GJ Food Funct; 2018 Jan; 9(1):502-510. PubMed ID: 29243753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]