These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25453324)

  • 41. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications.
    Sasaki Y; Akiyoshi K
    Chem Rec; 2010 Dec; 10(6):366-76. PubMed ID: 20836092
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering.
    Rnjak-Kovacina J; Wise SG; Li Z; Maitz PK; Young CJ; Wang Y; Weiss AS
    Biomaterials; 2011 Oct; 32(28):6729-36. PubMed ID: 21683438
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobic interfaces.
    Lee I; Akiyoshi K
    Biomaterials; 2004 Jul; 25(15):2911-8. PubMed ID: 14967522
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis by AGET ATRP of degradable nanogel precursors for in situ formation of nanostructured hyaluronic acid hydrogel.
    Bencherif SA; Washburn NR; Matyjaszewski K
    Biomacromolecules; 2009 Sep; 10(9):2499-507. PubMed ID: 19711888
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis and characterization of novel dual-responsive nanogels and their application as drug delivery systems.
    Peng J; Qi T; Liao J; Fan M; Luo F; Li H; Qian Z
    Nanoscale; 2012 Apr; 4(8):2694-704. PubMed ID: 22426443
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Liposomes co-modified with cholesterol anchored cleavable PEG and octaarginines for tumor targeted drug delivery.
    Tang J; Fu H; Kuang Q; Zhang L; Zhang Q; Liu Y; Ran R; Gao H; Zhang Z; He Q
    J Drug Target; 2014 May; 22(4):313-26. PubMed ID: 24404866
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair.
    Kubinová S; Horák D; Hejčl A; Plichta Z; Kotek J; Syková E
    J Biomed Mater Res A; 2011 Dec; 99(4):618-29. PubMed ID: 21953978
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interconnected roles of scaffold hydrophobicity, drug loading, and encapsulation stability in polymeric nanocarriers.
    Bickerton S; Jiwpanich S; Thayumanavan S
    Mol Pharm; 2012 Dec; 9(12):3569-78. PubMed ID: 23088589
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Poly(N-isopropylacrylamide-co-acrylic acid) nanogels for tracing and delivering genes to human mesenchymal stem cells.
    Park JS; Yang HN; Woo DG; Jeon SY; Park KH
    Biomaterials; 2013 Nov; 34(34):8819-34. PubMed ID: 23937912
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro and in vivo biocompatibility studies of a recombinant analogue of spidroin 1 scaffolds.
    Moisenovich MM; Pustovalova OL; Arhipova AY; Vasiljeva TV; Sokolova OS; Bogush VG; Debabov VG; Sevastianov VI; Kirpichnikov MP; Agapov II
    J Biomed Mater Res A; 2011 Jan; 96(1):125-31. PubMed ID: 21105160
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
    Li Y; Xiong J; Wong CS; Hodgson PD; Wen C
    Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effective CpG DNA delivery using amphiphilic cycloamylose nanogels.
    Tahara Y; Yasuoka J; Sawada S; Sasaki Y; Akiyoshi K
    Biomater Sci; 2015 Feb; 3(2):256-64. PubMed ID: 26218116
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Macroporous starPEG-heparin cryogels.
    Welzel PB; Grimmer M; Renneberg C; Naujox L; Zschoche S; Freudenberg U; Werner C
    Biomacromolecules; 2012 Aug; 13(8):2349-58. PubMed ID: 22758219
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Raspberry-like assembly of cross-linked nanogels for protein delivery.
    Hasegawa U; Sawada S; Shimizu T; Kishida T; Otsuji E; Mazda O; Akiyoshi K
    J Control Release; 2009 Dec; 140(3):312-7. PubMed ID: 19573568
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Magnetically Guided Protein Transduction by Hybrid Nanogel Chaperones with Iron Oxide Nanoparticles.
    Kawasaki R; Sasaki Y; Katagiri K; Mukai SA; Sawada S; Akiyoshi K
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11377-81. PubMed ID: 27295070
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation and characterization of a pH-responsive nanogel based on a photo-cross-linked micelle formed from block copolymers with controlled structure.
    Yusa S; Sugahara M; Endo T; Morishima Y
    Langmuir; 2009 May; 25(9):5258-65. PubMed ID: 19292434
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Porous scaffolds based on cross-linking of poly(L-glutamic acid).
    Cao B; Yin J; Yan S; Cui L; Chen X; Xie Y
    Macromol Biosci; 2011 Mar; 11(3):427-34. PubMed ID: 21108455
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells.
    Yang Q; Peng J; Guo Q; Huang J; Zhang L; Yao J; Yang F; Wang S; Xu W; Wang A; Lu S
    Biomaterials; 2008 May; 29(15):2378-87. PubMed ID: 18313139
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The mechanically enhanced phase separation of sprayed polyurethane scaffolds and their effect on the alignment of fibroblasts.
    Kennedy JP; McCandless SP; Lasher RA; Hitchcock RW
    Biomaterials; 2010 Feb; 31(6):1126-32. PubMed ID: 19878993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.