These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Biohydrogen production coupled with wastewater treatment using selected microalgae. Satheesh S; Pugazhendi A; Al-Mur BA; Balasubramani R Chemosphere; 2023 Sep; 334():138932. PubMed ID: 37209846 [TBL] [Abstract][Full Text] [Related]
3. Combining biotechnology with circular bioeconomy: From poultry, swine, cattle, brewery, dairy and urban wastewaters to biohydrogen. Ferreira A; Marques P; Ribeiro B; Assemany P; de Mendonça HV; Barata A; Oliveira AC; Reis A; Pinheiro HM; Gouveia L Environ Res; 2018 Jul; 164():32-38. PubMed ID: 29475106 [TBL] [Abstract][Full Text] [Related]
4. Carbon-dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus. Chaudhary R; Dikshit AK; Tong YW Environ Sci Pollut Res Int; 2018 Jul; 25(21):20399-20406. PubMed ID: 28656576 [TBL] [Abstract][Full Text] [Related]
5. Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Arbib Z; Ruiz J; Álvarez-Díaz P; Garrido-Pérez C; Perales JA Water Res; 2014 Feb; 49():465-74. PubMed ID: 24268718 [TBL] [Abstract][Full Text] [Related]
6. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios. Ferreira AF; Ortigueira J; Alves L; Gouveia L; Moura P; Silva C Bioresour Technol; 2013 Sep; 144():156-64. PubMed ID: 23867534 [TBL] [Abstract][Full Text] [Related]
7. Microalgae-bacterial granular consortium: Striding towards sustainable production of biohydrogen coupled with wastewater treatment. Iqbal K; Saxena A; Pande P; Tiwari A; Chandra Joshi N; Varma A; Mishra A Bioresour Technol; 2022 Jun; 354():127203. PubMed ID: 35462016 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake. Krustok I; Odlare M; Truu J; Nehrenheim E Bioresour Technol; 2016 Feb; 202():238-43. PubMed ID: 26716890 [TBL] [Abstract][Full Text] [Related]
9. A simplistic approach of algal biofuels production from wastewater using a Hybrid Anaerobic Baffled Reactor and Photobioreactor (HABR-PBR) System. Khalekuzzaman M; Alamgir M; Islam MB; Hasan M PLoS One; 2019; 14(12):e0225458. PubMed ID: 31805078 [TBL] [Abstract][Full Text] [Related]
10. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Lee CS; Lee SA; Ko SR; Oh HM; Ahn CY Water Res; 2015 Jan; 68():680-91. PubMed ID: 25462772 [TBL] [Abstract][Full Text] [Related]
11. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production. Miranda JR; Passarinho PC; Gouveia L Appl Microbiol Biotechnol; 2012 Oct; 96(2):555-64. PubMed ID: 22899495 [TBL] [Abstract][Full Text] [Related]
12. Northern green algae have the capacity to remove active pharmaceutical ingredients. Gojkovic Z; Lindberg RH; Tysklind M; Funk C Ecotoxicol Environ Saf; 2019 Apr; 170():644-656. PubMed ID: 30579165 [TBL] [Abstract][Full Text] [Related]
13. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. Kang Z; Kim BH; Ramanan R; Choi JE; Yang JW; Oh HM; Kim HS J Microbiol Biotechnol; 2015 Jan; 25(1):109-18. PubMed ID: 25341470 [TBL] [Abstract][Full Text] [Related]
14. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation. Ren HY; Liu BF; Kong F; Zhao L; Xing D; Ren NQ Bioresour Technol; 2014 Apr; 157():355-9. PubMed ID: 24582427 [TBL] [Abstract][Full Text] [Related]
15. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Zhu L; Wang Z; Shu Q; Takala J; Hiltunen E; Feng P; Yuan Z Water Res; 2013 Sep; 47(13):4294-302. PubMed ID: 23764580 [TBL] [Abstract][Full Text] [Related]
16. A comprehensive study on the effect of light quality imparted by light-emitting diodes (LEDs) on the physiological and biochemical properties of the microalgal consortia of Chlorella variabilis and Scenedesmus obliquus cultivated in dairy wastewater. Gatamaneni Loganathan B; Orsat V; Lefsrud M; Wu BS Bioprocess Biosyst Eng; 2020 Aug; 43(8):1445-1455. PubMed ID: 32270294 [TBL] [Abstract][Full Text] [Related]
17. Isolation and heterotrophic cultivation of mixotrophic microalgae strains for domestic wastewater treatment and lipid production under dark condition. Zhang TY; Wu YH; Zhu SF; Li FM; Hu HY Bioresour Technol; 2013 Dec; 149():586-9. PubMed ID: 24140357 [TBL] [Abstract][Full Text] [Related]
18. Utilization of tannery wastewater for biofuel production: New insights on microalgae growth and biomass production. Nagi M; He M; Li D; Gebreluel T; Cheng B; Wang C Sci Rep; 2020 Jan; 10(1):1530. PubMed ID: 32001724 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp. Prandini JM; da Silva ML; Mezzari MP; Pirolli M; Michelon W; Soares HM Bioresour Technol; 2016 Feb; 202():67-75. PubMed ID: 26700760 [TBL] [Abstract][Full Text] [Related]
20. Influence of Water Depth on Microalgal Production, Biomass Harvest, and Energy Consumption in High Rate Algal Pond Using Municipal Wastewater. Kim BH; Choi JE; Cho K; Kang Z; Ramanan R; Moon DG; Kim HS J Microbiol Biotechnol; 2018 Apr; 28(4):630-637. PubMed ID: 29429325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]