These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Modulating smooth muscle cell response by the release of TGFβ2 from tubular scaffolds for vascular tissue engineering. Ardila DC; Tamimi E; Doetschman T; Wagner WR; Vande Geest JP J Control Release; 2019 Apr; 299():44-52. PubMed ID: 30797003 [TBL] [Abstract][Full Text] [Related]
3. Smooth muscle tissue engineering in crosslinked electrospun gelatin scaffolds. Elsayed Y; Lekakou C; Labeed F; Tomlins P J Biomed Mater Res A; 2016 Jan; 104(1):313-21. PubMed ID: 26378902 [TBL] [Abstract][Full Text] [Related]
4. Tubular scaffolds of gelatin and poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel for the proliferation of the primary intestinal smooth muscle cells of rats. Jwo SC; Chiu CH; Tang SJ; Hsieh MF Biomed Mater; 2013 Dec; 8(6):065002. PubMed ID: 24225182 [TBL] [Abstract][Full Text] [Related]
5. Controlled heparin conjugation on electrospun poly(ε-caprolactone)/gelatin fibers for morphology-dependent protein delivery and enhanced cellular affinity. Lee J; Yoo JJ; Atala A; Lee SJ Acta Biomater; 2012 Jul; 8(7):2549-58. PubMed ID: 22465575 [TBL] [Abstract][Full Text] [Related]
6. Electrospun tecophilic/gelatin nanofibers with potential for small diameter blood vessel tissue engineering. Vatankhah E; Prabhakaran MP; Semnani D; Razavi S; Morshed M; Ramakrishna S Biopolymers; 2014 Dec; 101(12):1165-80. PubMed ID: 25042000 [TBL] [Abstract][Full Text] [Related]
7. Smooth muscle alpha-actin and calponin expression and extracellular matrix production of human coronary artery smooth muscle cells in 3D scaffolds. Grenier S; Sandig M; Mequanint K Tissue Eng Part A; 2009 Oct; 15(10):3001-11. PubMed ID: 19323608 [TBL] [Abstract][Full Text] [Related]
9. Engineering of fibrillar decorin matrices for a tissue-engineered trachea. Hinderer S; Schesny M; Bayrak A; Ibold B; Hampel M; Walles T; Stock UA; Seifert M; Schenke-Layland K Biomaterials; 2012 Jul; 33(21):5259-66. PubMed ID: 22521489 [TBL] [Abstract][Full Text] [Related]
10. Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications. Uchida N; Sivaraman S; Amoroso NJ; Wagner WR; Nishiguchi A; Matsusaki M; Akashi M; Nagatomi J J Biomed Mater Res A; 2016 Jan; 104(1):94-103. PubMed ID: 26194176 [TBL] [Abstract][Full Text] [Related]
11. Acute Elution of TGFβ2 Affects the Smooth Muscle Cells in a Compliance-Matched Vascular Graft. Furdella KJ; Higuchi S; Kim K; Doetschman T; Wagner WR; Vande Geest JP Tissue Eng Part A; 2022 Jul; 28(13-14):640-650. PubMed ID: 35521649 [TBL] [Abstract][Full Text] [Related]
12. Phenotypic modulation of smooth muscle cells by chemical and mechanical cues of electrospun tecophilic/gelatin nanofibers. Vatankhah E; Prabhakaran MP; Semnani D; Razavi S; Zamani M; Ramakrishna S ACS Appl Mater Interfaces; 2014 Mar; 6(6):4089-101. PubMed ID: 24588215 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and characterisation of biomimetic, electrospun gelatin fibre scaffolds for tunica media-equivalent, tissue engineered vascular grafts. Elsayed Y; Lekakou C; Labeed F; Tomlins P Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():473-83. PubMed ID: 26838874 [TBL] [Abstract][Full Text] [Related]
14. Influence of mechanical stimulation in the development of a medial equivalent tissue-engineered vascular construct using a gelatin-g-vinyl acetate co-polymer scaffold. Thomas LV; Nair PD J Biomater Sci Polym Ed; 2012; 23(16):2069-87. PubMed ID: 22104760 [TBL] [Abstract][Full Text] [Related]
15. Impact of bladder-derived acellular matrix, growth factors, and extracellular matrix constituents on the survival and multipotency of marrow-derived mesenchymal stem cells. Antoon R; Yeger H; Loai Y; Islam S; Farhat WA J Biomed Mater Res A; 2012 Jan; 100(1):72-83. PubMed ID: 21972045 [TBL] [Abstract][Full Text] [Related]
16. Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold. Sharifpoor S; Simmons CA; Labow RS; Paul Santerre J Biomaterials; 2011 Jul; 32(21):4816-29. PubMed ID: 21463894 [TBL] [Abstract][Full Text] [Related]
17. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold. Mun CH; Jung Y; Kim SH; Kim HC; Kim SH Artif Organs; 2013 Dec; 37(12):E168-78. PubMed ID: 23834728 [TBL] [Abstract][Full Text] [Related]
18. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences. Vozzi G; Corallo C; Carta S; Fortina M; Gattazzo F; Galletti M; Giordano N J Biomed Mater Res A; 2014 May; 102(5):1415-21. PubMed ID: 23775901 [TBL] [Abstract][Full Text] [Related]
19. An airway smooth muscle cell niche under physiological pulsatile flow culture using a tubular dense collagen construct. Ghezzi CE; Risse PA; Marelli B; Muja N; Barralet JE; Martin JG; Nazhat SN Biomaterials; 2013 Mar; 34(8):1954-66. PubMed ID: 23257180 [TBL] [Abstract][Full Text] [Related]
20. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Gautam S; Chou CF; Dinda AK; Potdar PD; Mishra NC Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():402-9. PubMed ID: 24268275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]