These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25453955)

  • 21. [Collagen fibril formation in vitro at temperatures close to physiological values].
    Nikolaeva TI; Kuznetsova SM; Rogachevskiĭ VV
    Biofizika; 2012; 57(6):973-81. PubMed ID: 23272577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apatite minerals derived from collagen phosphorylation modification induce the hierarchical intrafibrillar mineralization of collagen fibers.
    Du T; Niu X; Hou S; Li Z; Li P; Fan Y
    J Biomed Mater Res A; 2019 Nov; 107(11):2403-2413. PubMed ID: 31222920
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel amphiphilic oligopeptide induced the intrafibrillar mineralisation via interacting with collagen and minerals.
    Wang QQ; Miao L; Zhang H; Wang SQ; Li Q; Sun W
    J Mater Chem B; 2020 Mar; 8(11):2350-2362. PubMed ID: 32104824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tenascin-X increases the stiffness of collagen gels without affecting fibrillogenesis.
    Margaron Y; Bostan L; Exposito JY; Malbouyres M; Trunfio-Sfarghiu AM; Berthier Y; Lethias C
    Biophys Chem; 2010 Mar; 147(1-2):87-91. PubMed ID: 20089348
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cooperative calcium phosphate nucleation within collagen fibrils.
    Zeiger DN; Miles WC; Eidelman N; Lin-Gibson S
    Langmuir; 2011 Jul; 27(13):8263-8. PubMed ID: 21657218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of Biomimetic Scaffolds with Both Intrafibrillar and Extrafibrillar Mineralization.
    Hu C; Zhang L; Wei M
    ACS Biomater Sci Eng; 2015 Aug; 1(8):669-676. PubMed ID: 33435090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of saline and pH on collagen type I fibrillogenesis in vitro: fibril polymorphism and colloidal gold labelling.
    Harris JR; Reiber A
    Micron; 2007; 38(5):513-21. PubMed ID: 17045806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energetic basis for the molecular-scale organization of bone.
    Tao J; Battle KC; Pan H; Salter EA; Chien YC; Wierzbicki A; De Yoreo JJ
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):326-31. PubMed ID: 25540415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developing exquisite collagen fibrillar assemblies in the presence of keratin nanoparticles for improved cellular affinity.
    Ran Y; Su W; Ma L; Tan Y; Yi Z; Li X
    Int J Biol Macromol; 2021 Oct; 189():380-390. PubMed ID: 34428491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative assessment of physico-chemical characteristics and fibril formation capacity of thermostable carp scales collagen.
    Pal GK; Suresh PV
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):32-40. PubMed ID: 27770898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of type I collagen fibril formation using thioflavin T fluorescent dye.
    Morimoto K; Kawabata K; Kunii S; Hamano K; Saito T; Tonomura B
    J Biochem; 2009 May; 145(5):677-84. PubMed ID: 19204013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microrheological characterization of collagen systems: from molecular solutions to fibrillar gels.
    Shayegan M; Forde NR
    PLoS One; 2013; 8(8):e70590. PubMed ID: 23936454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrafibrillar Mineralization of Self-Assembled Elastin-Like Recombinamer Fibrils.
    Li Y; Rodriguez-Cabello JC; Aparicio C
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):5838-5846. PubMed ID: 28127954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of prenucleation clusters in calcium phosphate mineralization of collagen.
    Ma YX; Hoff SE; Huang XQ; Liu J; Wan QQ; Song Q; Gu JT; Heinz H; Tay FR; Niu LN
    Acta Biomater; 2021 Jan; 120():213-223. PubMed ID: 32711082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of collagen fibrillogenesis by dentinal proteoglycans.
    Milan AM; Sugars RV; Embery G; Waddington RJ
    Calcif Tissue Int; 2005 Feb; 76(2):127-35. PubMed ID: 15549638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH-responsive collagen fibrillogenesis in confined droplets induced by vapour diffusion.
    Ramírez-Rodríguez GB; Iafisco M; Tampieri A; Gómez-Morales J; Delgado-López JM
    J Mater Sci Mater Med; 2014 Oct; 25(10):2305-12. PubMed ID: 24652593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of surface chemistry on the formation of thin films of native fibrillar collagen.
    Elliott JT; Woodward JT; Umarji A; Mei Y; Tona A
    Biomaterials; 2007 Feb; 28(4):576-85. PubMed ID: 17049596
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fibrillogenesis in continuously spun synthetic collagen fiber.
    Caves JM; Kumar VA; Wen J; Cui W; Martinez A; Apkarian R; Coats JE; Berland K; Chaikof EL
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):24-38. PubMed ID: 20024969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications.
    Pon-On W; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Krishnamra N; Tang IM
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():63-72. PubMed ID: 24656353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of chondroitin 4-sulfate on the reconstitution of collagen fibrils in vitro.
    Tian H; Li C; Liu W; Li J; Li G
    Colloids Surf B Biointerfaces; 2013 May; 105():259-66. PubMed ID: 23376753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.