These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
682 related articles for article (PubMed ID: 25454061)
1. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts. Ito A; Yamamoto M; Ikeda K; Sato M; Kawabe Y; Kamihira M J Biosci Bioeng; 2015 May; 119(5):596-603. PubMed ID: 25454061 [TBL] [Abstract][Full Text] [Related]
2. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells. Sato M; Ito A; Kawabe Y; Nagamori E; Kamihira M J Biosci Bioeng; 2011 Sep; 112(3):273-8. PubMed ID: 21646045 [TBL] [Abstract][Full Text] [Related]
3. A novel in vitro model for the assessment of postnatal myonuclear accretion. Kneppers A; Verdijk L; de Theije C; Corten M; Gielen E; van Loon L; Schols A; Langen R Skelet Muscle; 2018 Feb; 8(1):4. PubMed ID: 29444710 [TBL] [Abstract][Full Text] [Related]
4. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809 [TBL] [Abstract][Full Text] [Related]
5. Muscle-specific overexpression of the type 1 IGF receptor results in myoblast-independent muscle hypertrophy via PI3K, and not calcineurin, signaling. Quinn LS; Anderson BG; Plymate SR Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1538-51. PubMed ID: 17940216 [TBL] [Abstract][Full Text] [Related]
6. Nilotinib impairs skeletal myogenesis by increasing myoblast proliferation. Contreras O; Villarreal M; Brandan E Skelet Muscle; 2018 Feb; 8(1):5. PubMed ID: 29463296 [TBL] [Abstract][Full Text] [Related]
7. Sodium fluoride induced skeletal muscle changes: Degradation of proteins and signaling mechanism. Shenoy PS; Sen U; Kapoor S; Ranade AV; Chowdhury CR; Bose B Environ Pollut; 2019 Jan; 244():534-548. PubMed ID: 30384060 [TBL] [Abstract][Full Text] [Related]
8. Effect of cell-extracellular matrix interaction on myogenic characteristics and artificial skeletal muscle tissue. Ding R; Horie M; Nagasaka S; Ohsumi S; Shimizu K; Honda H; Nagamori E; Fujita H; Kawamoto T J Biosci Bioeng; 2020 Jul; 130(1):98-105. PubMed ID: 32278672 [TBL] [Abstract][Full Text] [Related]
9. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System. Chaturvedi V; Dye DE; Kinnear BF; van Kuppevelt TH; Grounds MD; Coombe DR PLoS One; 2015; 10(6):e0127675. PubMed ID: 26030912 [TBL] [Abstract][Full Text] [Related]
10. Control of myotube contraction using electrical pulse stimulation for bio-actuator. Yamasaki K; Hayashi H; Nishiyama K; Kobayashi H; Uto S; Kondo H; Hashimoto S; Fujisato T J Artif Organs; 2009; 12(2):131-7. PubMed ID: 19536631 [TBL] [Abstract][Full Text] [Related]
11. Insulin-like growth factor-1 (IGF-1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway. Yu M; Wang H; Xu Y; Yu D; Li D; Liu X; Du W Cell Biol Int; 2015 Aug; 39(8):910-22. PubMed ID: 25808997 [TBL] [Abstract][Full Text] [Related]
12. 3-D in vitro model of early skeletal muscle development. Cheema U; Yang SY; Mudera V; Goldspink GG; Brown RA Cell Motil Cytoskeleton; 2003 Mar; 54(3):226-36. PubMed ID: 12589681 [TBL] [Abstract][Full Text] [Related]
13. Thyroid Hormone Receptor α Plays an Essential Role in Male Skeletal Muscle Myoblast Proliferation, Differentiation, and Response to Injury. Milanesi A; Lee JW; Kim NH; Liu YY; Yang A; Sedrakyan S; Kahng A; Cervantes V; Tripuraneni N; Cheng SY; Perin L; Brent GA Endocrinology; 2016 Jan; 157(1):4-15. PubMed ID: 26451739 [TBL] [Abstract][Full Text] [Related]
15. Low-magnitude vertical vibration enhances myotube formation in C2C12 myoblasts. Wang CZ; Wang GJ; Ho ML; Wang YH; Yeh ML; Chen CH J Appl Physiol (1985); 2010 Sep; 109(3):840-8. PubMed ID: 20634357 [TBL] [Abstract][Full Text] [Related]
16. IGF-I and vitamin C promote myogenic differentiation of mouse and human skeletal muscle cells at low temperatures. Shima A; Pham J; Blanco E; Barton ER; Sweeney HL; Matsuda R Exp Cell Res; 2011 Feb; 317(3):356-66. PubMed ID: 21070767 [TBL] [Abstract][Full Text] [Related]
17. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts. Eom YW; Lee JE; Yang MS; Jang IK; Kim HE; Lee DH; Kim YJ; Park WJ; Kong JH; Shim KY; Lee JI; Kim HS Biochem Biophys Res Commun; 2011 Apr; 408(1):167-73. PubMed ID: 21473854 [TBL] [Abstract][Full Text] [Related]
18. Compensatory growth of C2C12 myotubes induced by the combined effect of lysine sufficiency and modulation of IGF-I and glucocorticoid levels. Ishida A; Nakashima K; Kyoya T; Katsumata M Biosci Biotechnol Biochem; 2013; 77(11):2302-4. PubMed ID: 24200797 [TBL] [Abstract][Full Text] [Related]
19. A reducing redox environment promotes C2C12 myogenesis: implications for regeneration in aged muscle. Hansen JM; Klass M; Harris C; Csete M Cell Biol Int; 2007 Jun; 31(6):546-53. PubMed ID: 17241791 [TBL] [Abstract][Full Text] [Related]
20. ERK2 is required for efficient terminal differentiation of skeletal myoblasts. Li J; Johnson SE Biochem Biophys Res Commun; 2006 Jul; 345(4):1425-33. PubMed ID: 16729973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]