BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25454063)

  • 1. Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11.
    Hirayama S; Shimizu M; Tsuchiya N; Furukawa S; Watanabe D; Shimoi H; Takagi H; Ogihara H; Morinaga Y
    J Biosci Bioeng; 2015 May; 119(5):532-7. PubMed ID: 25454063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and analysis of the AWA1 gene of a nonfoaming mutant of a sake yeast.
    Miyashita K; Sakamoto K; Kitagaki H; Iwashita K; Ito K; Shimoi H
    J Biosci Bioeng; 2004; 97(1):14-8. PubMed ID: 16233582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Awa1 gene is required for the foam-forming phenotype and cell surface hydrophobicity of sake yeast.
    Shimoi H; Sakamoto K; Okuda M; Atthi R; Iwashita K; Ito K
    Appl Environ Microbiol; 2002 Apr; 68(4):2018-25. PubMed ID: 11916725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutants of Lactobacillus plantarum ML11-11 deficient in co-aggregation with yeast exhibited reduced activities of mixed-species biofilm formation.
    Furukawa S; Nojima N; Nozaka S; Hirayama S; Satoh A; Ogihara H; Morinaga Y
    Biosci Biotechnol Biochem; 2012; 76(2):326-30. PubMed ID: 22313775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast mannan structure necessary for co-aggregation with Lactobacillus plantarum ML11-11.
    Hirayama S; Furukawa S; Ogihara H; Morinaga Y
    Biochem Biophys Res Commun; 2012 Mar; 419(4):652-5. PubMed ID: 22382028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening of lactic acid bacteria that can form mixed-species biofilm with Saccharomyces cerevisiae.
    Furukawa S; Isomae R; Tsuchiya N; Hirayama S; Yamagishi A; Kobayashi M; Suzuki C; Ogihara H; Morinaga Y
    Biosci Biotechnol Biochem; 2015; 79(4):681-6. PubMed ID: 25514879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic switching of sake yeast by kimoto lactic acid bacteria through theĀ [GAR
    Watanabe D; Kumano M; Sugimoto Y; Ito M; Ohashi M; Sunada K; Takahashi T; Yamada T; Takagi H
    J Biosci Bioeng; 2018 Nov; 126(5):624-629. PubMed ID: 29861316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of inter-species cell-cell co-aggregation between Lactobacillus plantarum ML11-11 and Saccharomyces cerevisiae BY4741 in mixed-species biofilm formation.
    Furukawa S; Nojima N; Yoshida K; Hirayama S; Ogihara H; Morinaga Y
    Biosci Biotechnol Biochem; 2011; 75(8):1430-4. PubMed ID: 21821955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome editing to generate nonfoam-forming sake yeast strains.
    Ohnuki S; Kashima M; Yamada T; Ghanegolmohammadi F; Zhou Y; Goshima T; Maruyama JI; Kitamoto K; Hirata D; Akao T; Ohya Y
    Biosci Biotechnol Biochem; 2019 Aug; 83(8):1583-1593. PubMed ID: 31189439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FPG1, a gene involved in foam formation in Saccharomyces cerevisiae.
    Blasco L; Veiga-Crespo P; Villa TG
    Yeast; 2011 Jun; 28(6):437-51. PubMed ID: 21425329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplified fragment length polymorphism of the AWA1 gene of sake yeasts for identification of sake yeast strains.
    Shimizu M; Miyashita K; Kitagaki H; Ito K; Shimoi H
    J Biosci Bioeng; 2005 Dec; 100(6):678-80. PubMed ID: 16473780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of sake yeast strains from Ariake Sea tidal flats and evaluation of their brewing characteristics.
    Baba S; Sawada K; Orita R; Kimura K; Goto M; Kobayashi G
    J Gen Appl Microbiol; 2022 Jun; 68(1):30-37. PubMed ID: 35431296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of high folate accumulation in a sake yeast other than Kyokai yeasts.
    Shibata Y; Yamada T; Morimoto T; Fujii T; Akao T; Goshima T; Takahashi T; Tanaka N
    J Biosci Bioeng; 2020 Jan; 129(1):1-5. PubMed ID: 31515157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristic features of the unique house sake yeast strain Saccharomyces cerevisiae Km67 used for industrial sake brewing.
    Takao Y; Takahashi T; Yamada T; Goshima T; Isogai A; Sueno K; Fujii T; Akao T
    J Biosci Bioeng; 2018 Nov; 126(5):617-623. PubMed ID: 29884321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steric microstructure of mixed-species biofilm formed by interaction between
    Hirayama S; Nojima N; Furukawa S; Ogihara H; Morinaga Y
    Biosci Biotechnol Biochem; 2019 Dec; 83(12):2386-2389. PubMed ID: 31362602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological role of the EHL gene in sake yeast and its effects on quality of sake.
    Tomonaga K; Tanaka J; Kiyoshi K; Akao T; Watanabe K; Kadokura T; Nakayama S
    J Biosci Bioeng; 2024 Mar; 137(3):195-203. PubMed ID: 38242756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed-species biofilm formation by direct cell-cell contact between brewing yeasts and lactic acid bacteria.
    Furukawa S; Yoshida K; Ogihara H; Yamasaki M; Morinaga Y
    Biosci Biotechnol Biochem; 2010; 74(11):2316-9. PubMed ID: 21071864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeasts and lactic acid bacteria mixed-specie biofilm formation is a promising cell immobilization technology for ethanol fermentation.
    Abe A; Furukawa S; Watanabe S; Morinaga Y
    Appl Biochem Biotechnol; 2013 Sep; 171(1):72-9. PubMed ID: 23817789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative stability of the folates highly accumulated in a non-Kyokai sake yeast.
    Shibata Y; Takahashi T; Morimoto T; Kanai M; Fujii T; Akao T; Goshima T; Yamada T
    J Gen Appl Microbiol; 2021 Nov; 67(5):214-219. PubMed ID: 34373370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning of the SPO11 gene that complements a meiotic recombination defect in sake yeast.
    Shimoi H; Kawamura N; Yamada M
    J Biosci Bioeng; 2020 Oct; 130(4):367-373. PubMed ID: 32646632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.