These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25454135)

  • 21. Formation of a water-xylene interface in a microchannel without sidewalls.
    Watanabe M
    Anal Chem; 2009 Oct; 81(19):8213-8. PubMed ID: 19715305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biopolymer microparticle and nanoparticle formation within a microfluidic device.
    Rondeau E; Cooper-White JJ
    Langmuir; 2008 Jun; 24(13):6937-45. PubMed ID: 18510374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of a microfluidic platform for monoclonal antibody extraction using an aqueous two-phase system.
    Silva DF; Azevedo AM; Fernandes P; Chu V; Conde JP; Aires-Barros MR
    J Chromatogr A; 2012 Aug; 1249():1-7. PubMed ID: 22742897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A green separation strategy for neodymium (III) from cobalt (II) and nickel (II) using an ionic liquid-based aqueous two-phase system.
    Chen Y; Wang H; Pei Y; Wang J
    Talanta; 2018 May; 182():450-455. PubMed ID: 29501177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of system and process parameters on partitioning of cheese whey proteins in aqueous two-phase systems.
    Rito-Palomares M; Hernandez M
    J Chromatogr B Biomed Sci Appl; 1998 Jun; 711(1-2):81-90. PubMed ID: 9699977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interfacial stabilization of organic-aqueous two-phase microflows for a miniaturized DNA extraction module.
    Reddy V; Zahn JD
    J Colloid Interface Sci; 2005 Jun; 286(1):158-65. PubMed ID: 15848413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structuring bubbles and foams in gelatine solutions within a circular microchannel device.
    Skurtys O; Aguilera JM
    J Colloid Interface Sci; 2008 Feb; 318(2):380-8. PubMed ID: 17991482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures.
    Moon BU; Jones SG; Hwang DK; Tsai SS
    Lab Chip; 2015 Jun; 15(11):2437-44. PubMed ID: 25906146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of Aqueous Two-Phase System Binodals and Tie-Lines by Electrowetting-on-Dielectric Droplet Manipulation.
    Kojima T; Lin CC; Takayama S; Fan SK
    Chembiochem; 2019 Jan; 20(2):270-275. PubMed ID: 30394637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid purification of cell encapsulated hydrogel beads from oil phase to aqueous phase in a microfluidic device.
    Deng Y; Zhang N; Zhao L; Yu X; Ji X; Liu W; Guo S; Liu K; Zhao XZ
    Lab Chip; 2011 Dec; 11(23):4117-21. PubMed ID: 22012540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Label-free direct visual analysis of hydrolytic enzyme activity using aqueous two-phase system droplet phase transitions.
    Lai D; Frampton JP; Tsuei M; Kao A; Takayama S
    Anal Chem; 2014 Apr; 86(8):4052-7. PubMed ID: 24654925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of salt additives on partition of nonionic solutes in aqueous PEG-sodium sulfate two-phase system.
    Ferreira LA; Teixeira JA; Mikheeva LM; Chait A; Zaslavsky BY
    J Chromatogr A; 2011 Aug; 1218(31):5031-9. PubMed ID: 21665218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of sequential fluid delivery in a fully autonomous capillary microfluidic device.
    Novo P; Volpetti F; Chu V; Conde JP
    Lab Chip; 2013 Feb; 13(4):641-5. PubMed ID: 23263650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid.
    Kim C; Chung S; Kim YE; Lee KS; Lee SH; Oh KW; Kang JY
    Lab Chip; 2011 Jan; 11(2):246-52. PubMed ID: 20967338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers.
    Zhou C; Zhu P; Tian Y; Tang X; Shi R; Wang L
    Lab Chip; 2017 Sep; 17(19):3310-3317. PubMed ID: 28861566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel polydimethylsiloxane microfluidic viscometer fabricated using microwire-molding.
    Zou M; Cai S; Zhao Z; Chen L; Zhao Y; Fan X; Chen S
    Rev Sci Instrum; 2015 Oct; 86(10):104302. PubMed ID: 26520971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogen peroxide concentration by pervaporation of a ternary liquid solution in microfluidics.
    Ziemecka I; Haut B; Scheid B
    Lab Chip; 2015 Jan; 15(2):504-11. PubMed ID: 25407090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polymer-Salt Aqueous Two-Phase System (ATPS) Micro-Droplets for Cell Encapsulation.
    Mastiani M; Firoozi N; Petrozzi N; Seo S; Kim M
    Sci Rep; 2019 Oct; 9(1):15561. PubMed ID: 31664112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.