These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25454137)

  • 1. Gradient retention prediction of acid-base analytes in reversed phase liquid chromatography: a simplified approach for acetonitrile-water mobile phases.
    Andrés A; Rosés M; Bosch E
    J Chromatogr A; 2014 Nov; 1370():129-34. PubMed ID: 25454137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatographic models to predict the elution of ionizable analytes by organic modifier gradient in reversed phase liquid chromatography.
    Andrés A; Téllez A; Rosés M; Bosch E
    J Chromatogr A; 2012 Jul; 1247():71-80. PubMed ID: 22698867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the chromatographic retention of acid-base compounds in pH buffered methanol-water mobile phases in gradient mode by a simplified model.
    Andrés A; Rosés M; Bosch E
    J Chromatogr A; 2015 Mar; 1385():42-8. PubMed ID: 25666497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retention of ionizable compounds in high-performance liquid chromatography. 14. Acid-base pK values in acetonitrile-water mobile phases.
    Espinosa S; Bosch E; Rosés M
    J Chromatogr A; 2002 Jul; 964(1-2):55-66. PubMed ID: 12198856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention of ionisable compounds on high-performance liquid chromatography XVI. Estimation of retention with acetonitrile/water mobile phases from aqueous buffer pH and analyte pKa.
    Subirats X; Bosch E; Rosés M
    J Chromatogr A; 2006 Jul; 1121(2):170-7. PubMed ID: 16753172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of reversed-phase high performance liquid chromatography based octanol-water partition coefficients for neutral and ionizable compounds: Methodology evaluation.
    Liang C; Qiao JQ; Lian HZ
    J Chromatogr A; 2017 Dec; 1528():25-34. PubMed ID: 29103597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous optimization of pH and binary organic composition by grid form modeling of the retention behavior in reversed-phase ultra high-performance liquid chromatography.
    Sasaki T; Todoroki K; Toyo'oka T
    J Pharm Biomed Anal; 2017 Nov; 146():251-260. PubMed ID: 28888712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retention of ionizable compounds in high-performance liquid chromatography. IX. Modelling retention in reversed-phase liquid chromatography as a function of pH and solvent composition with acetonitrile-water mobile phases.
    Espinosa S; Bosch E; Rosés M
    J Chromatogr A; 2002 Feb; 947(1):47-58. PubMed ID: 11873997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retention prediction of highly polar ionizable solutes under gradient conditions on a mixed-mode reversed-phase and weak anion-exchange stationary phase.
    Balkatzopoulou P; Fasoula S; Gika H; Nikitas P; Pappa-Louisi A
    J Chromatogr A; 2015 May; 1396():72-6. PubMed ID: 25900744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH Gradient as a tool for the separation of ionizable analytes in reversed-phase high-performance chromatography.
    Wiczling P; Kaliszan R
    Anal Chem; 2010 May; 82(9):3692-8. PubMed ID: 20353157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention Modelling of Phenoxy Acid Herbicides in Reversed-Phase HPLC under Gradient Elution.
    Biancolillo A; Maggi MA; Bassi S; Marini F; D'Archivio AA
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32168813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear free energy relationship models for the retention of partially ionized acid-base compounds in reversed-phase liquid chromatography.
    Soriano-Meseguer S; Fuguet E; Abraham MH; Port A; Rosés M
    J Chromatogr A; 2021 Jan; 1635():461720. PubMed ID: 33234293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the effects of type and concentration of organic modifiers, column type and chemical structure of analytes on the retention in reversed phase liquid chromatography using a single model.
    Jouyban A; Soltani S; Shayanfar A; Pappa-Louisi A
    J Chromatogr A; 2011 Sep; 1218(37):6454-63. PubMed ID: 21820120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approaches to model the retention and peak profile in linear gradient reversed-phase liquid chromatography.
    Baeza-Baeza JJ; Ortiz-Bolsico C; Torres-Lapasió JR; García-Álvarez-Coque MC
    J Chromatogr A; 2013 Apr; 1284():28-35. PubMed ID: 23453677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention prediction and separation optimization of ionizable analytes in reversed-phase liquid chromatography by organic modifier gradients in different eluent pHs.
    Fasoula S; Zisi Ch; Nikitas P; Pappa-Louisi A
    J Chromatogr A; 2013 Aug; 1305():131-8. PubMed ID: 23885673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH/organic solvent double-gradient reversed-phase HPLC.
    Wiczling P; Markuszewski MJ; Kaliszan M; Kaliszan R
    Anal Chem; 2005 Jan; 77(2):449-58. PubMed ID: 15649040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention of ionisable compounds on high-performance liquid chromatography XVIII: pH variation in mobile phases containing formic acid, piperazine, tris, boric acid or carbonate as buffering systems and acetonitrile as organic modifier.
    Subirats X; Bosch E; Rosés M
    J Chromatogr A; 2009 Mar; 1216(12):2491-8. PubMed ID: 19201416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications.
    Aral T; Aral H; Ziyadanoğulları B; Ziyadanoğulları R
    Talanta; 2015 Jan; 131():64-73. PubMed ID: 25281074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the acid-base ionization of drugs in their retention in reversed-phase liquid chromatography.
    Soriano-Meseguer S; Fuguet E; Port A; Rosés M
    Anal Chim Acta; 2019 Oct; 1078():200-211. PubMed ID: 31358220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic interpretation of the drift and noise of gradient baselines in reversed-phase liquid chromatography using mobile phase additives.
    Gritti F
    J Chromatogr A; 2020 Dec; 1633():461605. PubMed ID: 33128973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.