These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25454344)

  • 1. Enhanced slow waves at the periphery of human epileptic foci.
    Serafini R; Loeb JA
    Clin Neurophysiol; 2015 Jun; 126(6):1117-1123. PubMed ID: 25454344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Similarities and differences between the interictal epileptiform discharges of green-spikes and red-spikes zones of human neocortex.
    Serafini R
    Clin Neurophysiol; 2019 Mar; 130(3):396-405. PubMed ID: 30711894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves.
    Frauscher B; von Ellenrieder N; Ferrari-Marinho T; Avoli M; Dubeau F; Gotman J
    Brain; 2015 Jun; 138(Pt 6):1629-41. PubMed ID: 25792528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epileptic interictal discharges are more frequent during NREM slow wave downstates.
    Ujma PP; Halász P; Kelemen A; Fabó D; Erőss L
    Neurosci Lett; 2017 Sep; 658():37-42. PubMed ID: 28811195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human neocortical interictal epileptiform discharges are initiated by a low-voltage negative polarity wave.
    Serafini R
    Seizure; 2020 May; 78():150-158. PubMed ID: 31629613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Electroencephalography for patient with epilepsy].
    Shigeto H
    Nihon Rinsho; 2014 May; 72(5):809-17. PubMed ID: 24912280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-Dependency of Location of Epileptic Foci in "Continuous Spike-and-Waves during Sleep": A Parallel to the Posterior-Anterior Trajectory of Slow Wave Activity.
    Bölsterli Heinzle BK; Bast T; Critelli H; Huber R; Schmitt B
    Neuropediatrics; 2017 Feb; 48(1):36-41. PubMed ID: 27880966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous neuronal firing patterns during interictal epileptiform discharges in the human cortex.
    Keller CJ; Truccolo W; Gale JT; Eskandar E; Thesen T; Carlson C; Devinsky O; Kuzniecky R; Doyle WK; Madsen JR; Schomer DL; Mehta AD; Brown EN; Hochberg LR; Ulbert I; Halgren E; Cash SS
    Brain; 2010 Jun; 133(Pt 6):1668-81. PubMed ID: 20511283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial relationship between fast and slow components of ictal activities and interictal epileptiform discharges in epileptic spasms.
    Akiyama T; Akiyama M; Kobayashi K; Okanishi T; Boelman CG; Nita DA; Ochi A; Go CY; Snead OC; Rutka JT; Drake JM; Chuang S; Otsubo H
    Clin Neurophysiol; 2015 Sep; 126(9):1684-91. PubMed ID: 25557960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin and propagation of epileptic spasms delineated on electrocorticography.
    Asano E; Juhász C; Shah A; Muzik O; Chugani DC; Shah J; Sood S; Chugani HT
    Epilepsia; 2005 Jul; 46(7):1086-97. PubMed ID: 16026561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term sleep EEG recordings after partial sleep deprivation as a routine procedure in order to uncover epileptic phenomena: an evaluation of 719 EEG recordings.
    Kubicki S; Scheuler W; Wittenbecher H
    Epilepsy Res Suppl; 1991; 2():217-30. PubMed ID: 1760090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neocortical slices from adult chronic epileptic rats exhibit discharges of higher voltages and broader spread.
    Serafini R; Dettloff S; Loeb JA
    Neuroscience; 2016 May; 322():509-24. PubMed ID: 26892299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parameters of spikes in human epilepsy.
    Celesia GG; Chen RC
    Dis Nerv Syst; 1976 May; 37(5):277-81. PubMed ID: 944121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroencephalographic characterization of spike-wave discharges in cortex and thalamus in WAG/Rij rats.
    Sitnikova E; van Luijtelaar G
    Epilepsia; 2007 Dec; 48(12):2296-311. PubMed ID: 18196621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG spike versus EEG sharp wave: differential clinical significance in epilepsy.
    Jaseja H; Jaseja B
    Epilepsy Behav; 2012 Sep; 25(1):137. PubMed ID: 22809496
    [No Abstract]   [Full Text] [Related]  

  • 16. Improving sensitivity of EEG-fMRI studies in epilepsy: the role of sleep-specific activity.
    Moehring J; Coropceanu D; Galka A; Moeller F; Wolff S; Boor R; Jansen O; Stephani U; Siniatchkin M
    Neurosci Lett; 2011 Nov; 505(2):211-5. PubMed ID: 22027175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the location and type of epileptogenic lesion on scalp interictal epileptiform discharges and high-frequency oscillations.
    Cuello-Oderiz C; von Ellenrieder N; Dubeau F; Gotman J
    Epilepsia; 2017 Dec; 58(12):2153-2163. PubMed ID: 28983917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-dependent gene expression correlates with interictal spiking in human neocortical epilepsy.
    Rakhade SN; Shah AK; Agarwal R; Yao B; Asano E; Loeb JA
    Epilepsia; 2007; 48 Suppl 5():86-95. PubMed ID: 17910586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Olfactory cortex generates synchronized top-down inputs to the olfactory bulb during slow-wave sleep.
    Manabe H; Kusumoto-Yoshida I; Ota M; Mori K
    J Neurosci; 2011 Jun; 31(22):8123-33. PubMed ID: 21632934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epileptic encephalopathy with continuous spike-waves during slow-wave sleep including Landau-Kleffner syndrome.
    Van Bogaert P
    Handb Clin Neurol; 2013; 111():635-40. PubMed ID: 23622211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.