BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25454441)

  • 1. Nitrogen-doped porous aromatic frameworks for enhanced CO2 adsorption.
    Fu J; Wu J; Custelcean R; Jiang DE
    J Colloid Interface Sci; 2015 Jan; 438():191-195. PubMed ID: 25454441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalizing porous aromatic frameworks with polar organic groups for high-capacity and selective CO2 separation: a molecular simulation study.
    Babarao R; Dai S; Jiang DE
    Langmuir; 2011 Apr; 27(7):3451-60. PubMed ID: 21351767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo modeling of carbon dioxide adsorption in porous aromatic frameworks.
    Fraccarollo A; Canti L; Marchese L; Cossi M
    Langmuir; 2014 Apr; 30(14):4147-56. PubMed ID: 24646367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From molecules to materials: computational design of N-containing porous aromatic frameworks for CO2 capture.
    Li W; Shi H; Zhang J
    Chemphyschem; 2014 Jun; 15(9):1772-8. PubMed ID: 24954437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Synthesis of Ultrastable Porous Aromatic Frameworks by Suzuki-Miyaura Coupling Reaction for Adsorption Removal of Organic Dyes.
    Zhang L; Sun JS; Sun F; Chen P; Liu J; Zhu G
    Chemistry; 2019 Mar; 25(15):3903-3908. PubMed ID: 30659679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicted Separation of Acid Gases from Gas Mixtures by Functionalized Porous Aromatic Frameworks.
    Wang Y; Han C; Sinnott SB
    Langmuir; 2024 Mar; 40(11):5688-5694. PubMed ID: 38456440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous Carbon Materials Based on Graphdiyne Basis Units by the Incorporation of the Functional Groups and Li Atoms for Superior CO
    Dang Y; Guo W; Zhao L; Zhu H
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30002-30013. PubMed ID: 28809100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular simulations of nitrogen-doped hierarchical carbon adsorbents for post-combustion CO
    Psarras P; He J; Wilcox J
    Phys Chem Chem Phys; 2016 Oct; 18(41):28747-28758. PubMed ID: 27722315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous aromatic frameworks impregnated with fullerenes for enhanced methanol/water separation.
    Ahmed A; Xie Z; Konstas K; Babarao R; Todd BD; Hill MR; Thornton AW
    Langmuir; 2014 Dec; 30(48):14621-30. PubMed ID: 25380407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico design of a new Zn-triazole based metal-organic framework for CO
    Dahmani R; Grubišić S; Djordjević I; Ben Yaghlane S; Boughdiri S; Chambaud G; Hochlaf M
    J Chem Phys; 2021 Jan; 154(2):024303. PubMed ID: 33445914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of CO2 Adsorption and Catalytic Properties by Fe-Doping of [Ga2(OH)2(L)] (H4L = Biphenyl-3,3',5,5'-tetracarboxylic Acid), MFM-300(Ga2).
    Krap CP; Newby R; Dhakshinamoorthy A; García H; Cebula I; Easun TL; Savage M; Eyley JE; Gao S; Blake AJ; Lewis W; Beton PH; Warren MR; Allan DR; Frogley MD; Tang CC; Cinque G; Yang S; Schröder M
    Inorg Chem; 2016 Feb; 55(3):1076-88. PubMed ID: 26757137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium doping on 2D squaraine-bridged covalent organic polymers for enhancing adsorption properties: a theoretical study.
    Chen W; Huang L; Yi X; Zheng A
    Phys Chem Chem Phys; 2018 Feb; 20(9):6487-6499. PubMed ID: 29445809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the role of O-containing groups in CO
    Wang M; Fan X; Zhang L; Liu J; Wang B; Cheng R; Li M; Tian J; Shi J
    Nanoscale; 2017 Nov; 9(44):17593-17600. PubMed ID: 29114692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage.
    Yan Y; Yang S; Blake AJ; Schröder M
    Acc Chem Res; 2014 Feb; 47(2):296-307. PubMed ID: 24168725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porphyrinic Porous Aromatic Frameworks for Carbon Dioxide Adsorption and Separation.
    Yang J; Qiu H; Huang L; Meng S; Yang Y
    Chempluschem; 2023 Aug; 88(8):e202300292. PubMed ID: 37483159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmenting the Carbon Dioxide Uptake and Selectivity of Metal-Organic Frameworks by Metal Substitution: Molecular Simulations of LMOF-202.
    Agrawal A; Agrawal M; Suh D; Fei S; Alizadeh A; Ma Y; Matsuda R; Hsu WL; Daiguji H
    ACS Omega; 2020 Jul; 5(28):17193-17198. PubMed ID: 32715204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of Porous Aromatic Frameworks with Exceptional Porosity via Building Unit Engineering.
    Li M; Ren H; Sun F; Tian Y; Zhu Y; Li J; Mu X; Xu J; Deng F; Zhu G
    Adv Mater; 2018 Oct; 30(43):e1804169. PubMed ID: 30260523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale Computational Study on the Adsorption and Separation of CO
    Sokhanvaran V; Yeganegi S
    Chemphyschem; 2016 Dec; 17(24):4124-4133. PubMed ID: 27759907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superior Selective CO
    Li X; Zhu L; Xue Q; Chang X; Ling C; Xing W
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):31161-31169. PubMed ID: 28832119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Sulfur Doping and Humidity on CO
    Li X; Xue Q; Chang X; Zhu L; Ling C; Zheng H
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8336-8343. PubMed ID: 28215069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.