These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 25454525)
21. Identification of a Kunitz inhibitor from Albizzia kalkora and its inhibitory effect against pest midgut proteases. Zhou JY; Liao H; Zhang NH; Tang L; Xu Y; Chen F Biotechnol Lett; 2008 Aug; 30(8):1495-9. PubMed ID: 18368297 [TBL] [Abstract][Full Text] [Related]
22. In vivo and in vitro effect of Capsicum annum proteinase inhibitors on Helicoverpa armigera gut proteinases. Tamhane VA; Chougule NP; Giri AP; Dixit AR; Sainani MN; Gupta VS Biochim Biophys Acta; 2005 Mar; 1722(2):156-67. PubMed ID: 15715970 [TBL] [Abstract][Full Text] [Related]
23. Potentiation of insecticidal activity of Bacillus thuringiensis subsp. kurstaki HD-1 by proteinase inhibitors in the American bollworm, Helicoverpa armigera (Hübner). Gujar T; Kalia V; Kumari A; Prasad TV Indian J Exp Biol; 2004 Feb; 42(2):157-63. PubMed ID: 15282948 [TBL] [Abstract][Full Text] [Related]
25. Trypsin inhibitor from Poecilanthe parviflora seeds: purification, characterization, and activity against pest proteases. Garcia VA; Freire Md; Novello JC; Marangoni S; Macedo ML Protein J; 2004 Jul; 23(5):343-50. PubMed ID: 15328890 [TBL] [Abstract][Full Text] [Related]
26. Toxicity of Bacillus thuringiensis Cry proteins to Helicoverpa armigera (Lepidoptera: Noctuidae) in South Africa. Li H; Bouwer G J Invertebr Pathol; 2012 Jan; 109(1):110-6. PubMed ID: 22019386 [TBL] [Abstract][Full Text] [Related]
27. The impact of ingested potato type II inhibitors on the production of the major serine proteases in the gut of Helicoverpa armigera. Stevens JA; Dunse KM; Guarino RF; Barbeta BL; Evans SC; West JA; Anderson MA Insect Biochem Mol Biol; 2013 Feb; 43(2):197-208. PubMed ID: 23247047 [TBL] [Abstract][Full Text] [Related]
28. Way toward "dietary pesticides": molecular investigation of insecticidal action of caffeic acid against Helicoverpa armigera. Joshi RS; Wagh TP; Sharma N; Mulani FA; Sonavane U; Thulasiram HV; Joshi R; Gupta VS; Giri AP J Agric Food Chem; 2014 Nov; 62(45):10847-54. PubMed ID: 25329913 [TBL] [Abstract][Full Text] [Related]
29. Biochemical characterization of midgut digestive proteases from Mamestra brassicae (cabbage moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays. Chougule NP; Doyle E; Fitches E; Gatehouse JA J Insect Physiol; 2008 Mar; 54(3):563-72. PubMed ID: 18241882 [TBL] [Abstract][Full Text] [Related]
30. Knockdown of Helicoverpa armigera protease genes affects its growth and mortality via RNA interference. Vatanparast M; Kazzazi M; Sajjadian SM; Park Y Arch Insect Biochem Physiol; 2021 Nov; 108(3):e21840. PubMed ID: 34569086 [TBL] [Abstract][Full Text] [Related]
31. Regulatory effects of an inhibitor from Plathymenia foliolosa seeds on the larval development of Anagasta kuehniella (Lepidoptera). Ramos Vda S; Freire MG; Parra JR; Macedo ML Comp Biochem Physiol A Mol Integr Physiol; 2009 Feb; 152(2):255-61. PubMed ID: 19007900 [TBL] [Abstract][Full Text] [Related]
32. Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants. Kotkar HM; Sarate PJ; Tamhane VA; Gupta VS; Giri AP J Insect Physiol; 2009 Aug; 55(8):663-70. PubMed ID: 19450602 [TBL] [Abstract][Full Text] [Related]
33. The trypsin inhibitor from Entada acaciifolia seeds affects negatively the development of Mediterranean flour moth, Anagasta kuehniella. de Oliveira CF; Marangoni S; Macedo ML Pestic Biochem Physiol; 2014 Jan; 108():74-9. PubMed ID: 24485318 [TBL] [Abstract][Full Text] [Related]
34. Alkaline serine proteases from Helicoverpa armigera: potential candidates for industrial applications. Akbar SM; Sharma HC Arch Insect Biochem Physiol; 2017 Jan; 94(1):. PubMed ID: 28019702 [TBL] [Abstract][Full Text] [Related]
35. Larval development and proteolytic activity of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) exposed to different soybean protease inhibitors. Mendonça EG; de Almeida Barros R; Cordeiro G; da Silva CR; Campos WG; de Oliveira JA; de Almeida Oliveira MG Arch Insect Biochem Physiol; 2020 Jan; 103(1):e21637. PubMed ID: 31625209 [TBL] [Abstract][Full Text] [Related]
36. Significance of Penicillium ochrochloron chitinase as a biocontrol agent against pest Helicoverpa armigera. Patil NS; Jadhav JP Chemosphere; 2015 Jun; 128():231-5. PubMed ID: 25723715 [TBL] [Abstract][Full Text] [Related]
37. Molecular adaptations of Helicoverpa armigera midgut tissue under pyrethroid insecticide stress characterized by differential proteome analysis and enzyme activity assays. Konus M; Koy C; Mikkat S; Kreutzer M; Zimmermann R; Iscan M; Glocker MO Comp Biochem Physiol Part D Genomics Proteomics; 2013 Jun; 8(2):152-62. PubMed ID: 23685472 [TBL] [Abstract][Full Text] [Related]
38. Influence of CO2 and Temperature on Metabolism and Development of Helicoverpa armigera (Noctuidae: Lepidoptera). Akbar SM; Pavani T; Nagaraja T; Sharma HC Environ Entomol; 2016 Feb; 45(1):229-36. PubMed ID: 26363173 [TBL] [Abstract][Full Text] [Related]
39. Biological activity of Dolichos biflorus L. trypsin inhibitor against lepidopteran insect pests. Nath AK; Kumari R; Sharma S; Sharma H Indian J Exp Biol; 2015 Sep; 53(9):594-9. PubMed ID: 26548079 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of the synergistic activities of Bacillus thuringiensis Cry proteins against Helicoverpa armigera (Lepidoptera: Noctuidae). Li H; Bouwer G J Invertebr Pathol; 2014 Sep; 121():7-13. PubMed ID: 24963598 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]