These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 25454578)

  • 41. Residual lignin in cellulose nanofibrils enhances the interfacial stabilization of Pickering emulsions.
    Guo S; Li X; Kuang Y; Liao J; Liu K; Li J; Mo L; He S; Zhu W; Song J; Song T; Rojas OJ
    Carbohydr Polym; 2021 Feb; 253():117223. PubMed ID: 33278985
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanocellulose size regulates microalgal flocculation and lipid metabolism.
    Yu SI; Min SK; Shin HS
    Sci Rep; 2016 Oct; 6():35684. PubMed ID: 27796311
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deconstruction of pineapple peel cellulose based on Fe
    Zhu H; Cheng JH; Ma J; Sun DW
    Food Chem; 2023 Feb; 401():134116. PubMed ID: 36113216
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phase behavior of medium and high internal phase water-in-oil emulsions stabilized solely by hydrophobized bacterial cellulose nanofibrils.
    Lee KY; Blaker JJ; Murakami R; Heng JY; Bismarck A
    Langmuir; 2014 Jan; 30(2):452-60. PubMed ID: 24400918
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold.
    Cai H; Sharma S; Liu W; Mu W; Liu W; Zhang X; Deng Y
    Biomacromolecules; 2014 Jul; 15(7):2540-7. PubMed ID: 24894125
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils.
    Benítez AJ; Torres-Rendon J; Poutanen M; Walther A
    Biomacromolecules; 2013 Dec; 14(12):4497-506. PubMed ID: 24245557
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thin film of lignocellulosic nanofibrils with different chemical composition for QCM-D study.
    Kumagai A; Lee SH; Endo T
    Biomacromolecules; 2013 Jul; 14(7):2420-6. PubMed ID: 23721319
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production.
    Balea A; Sanchez-Salvador JL; Monte MC; Merayo N; Negro C; Blanco A
    Molecules; 2019 May; 24(9):. PubMed ID: 31075959
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanisms behind the stabilizing action of cellulose nanofibrils in wet-stable cellulose foams.
    Cervin NT; Johansson E; Benjamins JW; Wågberg L
    Biomacromolecules; 2015 Mar; 16(3):822-31. PubMed ID: 25635472
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Facile fabrication of cellulose composite films with excellent UV resistance and antibacterial activity.
    Wang X; Wang S; Liu W; Wang S; Zhang L; Sang R; Hou Q; Li J
    Carbohydr Polym; 2019 Dec; 225():115213. PubMed ID: 31521302
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ductile all-cellulose nanocomposite films fabricated from core-shell structured cellulose nanofibrils.
    Larsson PA; Berglund LA; Wågberg L
    Biomacromolecules; 2014 Jun; 15(6):2218-23. PubMed ID: 24773125
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermomechanical properties of lignin-based electrospun nanofibers and films reinforced with cellulose nanocrystals: a dynamic mechanical and nanoindentation study.
    Ago M; Jakes JE; Rojas OJ
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11768-76. PubMed ID: 24168403
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hybrid films based on holistic celery nanocellulose and lignin/hemicellulose with enhanced mechanical properties and dye removal.
    Luo J; Huang K; Zhou X; Xu Y
    Int J Biol Macromol; 2020 Mar; 147():699-705. PubMed ID: 31931067
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microemulsion processing of silica-polymer nanocomposites.
    Chow PY; Gan LM
    J Nanosci Nanotechnol; 2004; 4(1-2):197-202. PubMed ID: 15112567
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of mixed enzymatic pretreatment and post-treatment for enhancing the cellulose nanofibrillation efficiency.
    Bian H; Dong M; Chen L; Zhou X; Ni S; Fang G; Dai H
    Bioresour Technol; 2019 Dec; 293():122171. PubMed ID: 31558340
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures.
    Cho YH; Kim S; Bae EK; Mok CK; Park J
    J Food Sci; 2008 Apr; 73(3):E115-21. PubMed ID: 18387105
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis of cellulose nanofibril bound silver nanoprism for surface enhanced Raman scattering.
    Jiang F; Hsieh YL
    Biomacromolecules; 2014 Oct; 15(10):3608-16. PubMed ID: 25189757
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of ultrathin nanocellulose shells on tough microparticles via an emulsion-templated colloidal assembly: towards versatile carrier materials.
    Fujisawa S; Togawa E; Kuroda K; Saito T; Isogai A
    Nanoscale; 2019 Aug; 11(32):15004-15009. PubMed ID: 31298680
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Immunosensors for C-Reactive Protein Based on Ultrathin Films of Carboxylated Cellulose Nanofibrils.
    Zhang Y; Rojas OJ
    Biomacromolecules; 2017 Feb; 18(2):526-534. PubMed ID: 28036163
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differential activity of lytic polysaccharide monooxygenases on celluloses of different crystallinity. Effectiveness in the sustainable production of cellulose nanofibrils.
    Valenzuela SV; Valls C; Schink V; Sánchez D; Roncero MB; Diaz P; Martínez J; Pastor FIJ
    Carbohydr Polym; 2019 Mar; 207():59-67. PubMed ID: 30600044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.